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Review of Pipelining 

 Pipelining improves throughput of an instruction sequence 

but not the latency of an individual instruction 

 Speedup due to pipelining limited by hazards 

 Structural hazards lead to contention for limited resources 

 Data hazards require stalling or forwarding to maintain sequential 

semantics 

 Control hazards require cancellation of instructions (to maintain 

sequential branch semantics) or delayed branches (to define a new 

branch semantics) 

 Hazard 

 Detection: interlocks in hardware 

 Elimination: renaming, branch elimination 

 Resolution: stalling, forwarding, scheduling 
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CPI of a Pipelined Machine 

Pipeline CPI = Ideal pipeline CPI 

                     + Structural stalls 

                     + RAW stalls 

                     + WAR stalls 

                     + WAW stalls 

                     + Control stalls 

Basic pipeline scheduling 

Dynamic scheduling with scoreboarding 

Dynamic memory disambiguation 

    (for stalls involving memory) 

Compiler dependence analysis 

Software pipeline 

Trace scheduling 

Speculation 

Dynamic scheduling 

   with register renaming 

Compiler dependence  

    analysis 

Software pipelining 

Trace scheduling 

Speculation 

Loop unrolling 

Dynamic branch prediction 

Speculation 

Predication 

Issuing multiple instructions per cycle 

Compiler dependence analysis 

Software pipelining 

Trace scheduling 
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Instruction-Level Parallelism (ILP) 

 Pipelining is most effective when we have parallelism 

among instructions 

 Parallelism within a basic block is limited 

 Branch frequency of 15% implies about six instructions in basic block 

 These instructions are likely to depend on each other 

 Need to look beyond basic blocks 

 Loop-level parallelism 

 Parallelism among iterations of a loop 

 To convert loop-level parallelism into ILP, we need to “unroll” the 

loop 

•  Statically, by the compiler 

•  Dynamically, by the hardware 

•  Using vector instructions 
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Motivating Example for Loop Unrolling 
 for (u = 0; u < 1000; u++) 

     x[u] = x[u] + s; 

Assumptions 

•Loop is being run backwards 

•Scalar s is in register pair F2:F3 

•Array x starts at memory address 0 

•1-cycle branch delay 

•No structural hazards 

LOOP: LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP 

      NOP 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LD F D X M W

ADDD - F D E E E E M W

SD - - F D X M W

SUBI F D X M W

BNEZ - F D X M W

NOP -

LD F D X M W

10 cycles per iteration 

 for (u = 999; u >= 0; u--) 

     x[u] = x[u] + s; 
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How Far Can We Get With Scheduling? 
LOOP: LD F0, 0(R1) 

      SUBI R1, R1, 8 

      ADDD F4, F0, F2 

      BNEZ R1, LOOP 

      SD       8(R1), F4 

LOOP: LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP 

      NOP 

6 cycles per iteration 

Note change in SD instruction, from 0(R1) to 8(R1); this is a non-trivial change. 

 for (u = 999; u >= 0; ){ 

     register double d = x[u]; 

     u--; d += s; x[u+1] = d; 

} 

1 2 3 4 5 6 7 8 9 10 11

LD F D X M W

SUBI F D X M W

ADDD F D E E E E M W

BNEZ F D X M W

SD - F D X M W

LD F D X M W
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Observations on Scheduled Code 

 3 out of 5 instructions involve FP work 

 The other two constitute loop overhead 

 Could we improve loop performance by unrolling the loop? 

 Assume number of loop iterations is a multiple of 4, and 

unroll loop body four times 

 In real life, would need to handle the fact that loop trip count may not 

be a multiple of 4 
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Unrolling: Take 1 

LOOP: LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP  

      LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP 

      LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP 

      LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP 

 This is not any different from 

situation before unrolling 

 Branches induce control 

dependence 

 Can’t move instructions much 

during scheduling 

 However, the whole point of 

unrolling was to guarantee that 

the three internal branches will 

fall through 

 So, maybe we can delete the 

intermediate branches 

 There is an implicit NOP after the 

final branch 
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Unrolling: Take 2 
 Even though we got rid of the control 

dependences, we have flow 

dependences through R1 

 We could remove flow dependences 

by observing that R1 is decremented 

by 8 each time 

 Adjust the address specifiers 

 Delete the first three SUBIs 

 Change the constant in the fourth 

SUBI to 32 

 These are non-trivial inferences for a 

compiler to make 

LOOP: LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP 

 for (u = 999; u >= 0; ){ 

     register double d; 

     d = x[u]; d += s; x[u] = d; u--; 

     d = x[u]; d += s; x[u] = d; u--; 

     d = x[u]; d += s; x[u] = d; u--; 

     d = x[u]; d += s; x[u] = d; u--; 

} 
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Unrolling: Take 3 

 Performance is now limited by the 

anti-dependences and output 

dependences on F0 and F4 

 These are name dependences 

 The instructions are not in a 

producer-consumer relation 

 They are simply using the same 

registers, but they don’t have to 

 We can use different registers in 

different loop iterations, subject to 

availability 

 Let’s rename registers 

LOOP: LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      LD F0, -8(R1) 

      ADDD F4, F0, F2 

      SD       -8(R1), F4 

      LD F0, -16(R1) 

      ADDD F4, F0, F2 

      SD       -16(R1), F4 

      LD F0, -24(R1) 

      ADDD F4, F0, F2 

      SD       -24(R1), F4 

      SUBI R1, R1, 32 

      BNEZ R1, LOOP 

 for (u = 999; u >= 0; u -= 4){ 

     register double d; 

     d = x[u]; d += s; x[u] = d; 

     d = x[u-1]; d += s; x[u-1] = d; 

     d = x[u-2]; d += s; x[u-2] = d; 

     d = x[u-3]; d += s; x[u-3] = d; 

} 
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Unrolling: Take 4 
LOOP: LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      LD F6, -8(R1) 

      ADDD F8, F6, F2 

      SD       -8(R1), F8 

      LD F10, -16(R1) 

      ADDD F12, F10, F2 

      SD       -16(R1), F12 

      LD F14, -24(R1) 

      ADDD F16, F14, F2 

      SD       -24(R1), F16 

      SUBI R1, R1, 32 

      BNEZ R1, LOOP 

 Time for execution of 4 iterations 

 14 instruction cycles 

 4 LDADDD stalls 

 4 ADDDSD stalls (2 cycles each) 

 1 SUBIBNEZ stall 

 1 branch delay stall 

 36 cycles for 4 iterations, or 9 cycles 

per iteration 

 Slower than scheduled version of 

original loop 

 Let’s schedule the unrolled loop 

 for (u = 999; u >= 0; u -= 4){ 

     register double d0, d1, d2, d3; 

     d0 = x[u]; d0 += s; x[u] = d0; 

     d1 = x[u-1]; d1 += s; x[u-1] = d1; 

     d2 = x[u-2]; d2 += s; x[u-2] = d2; 

     d3 = x[u-3]; d3 += s; x[u-3] = d3; 

} 
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Unrolling: Take 5 
 This code runs without stalls 

 14 cycles for 4 iterations 

 3.5 cycles per iteration 

 Performance is limited by loop 

control overhead once every four 

iterations 

 Note that original loop had three FP 

instructions that were not 

independent 

 Loop unrolling exposed independent 

instructions from multiple loop 

iterations 

 By unrolling further, can approach 

asymptotic rate of 3 cycles per 

iteration 

 Subject to availability of registers 

LOOP: LD F0, 0(R1) 

      LD F6, -8(R1) 

      LD F10, -16(R1) 

      LD F14, -24(R1) 

      ADDD F4, F0, F2 

      ADDD F8, F6, F2 

      ADDD F12, F10, F2 

      ADDD F16, F14, F2 

      SD       0(R1), F4 

      SD       -8(R1), F8 

      SUBI R1, R1, 32 

      SD       16(R1), F12 

      BNEZ R1, LOOP 

      SD       8(R1), F16 

 for (u = 999; u >= 0; ){ 

     register double d0, d1, d2, d3; 

     d0 = x[u]; d1 = x[u-1]; d2 = x[u-2]; d3 = x[u-3]; 

     d0 += s; d1 += s; d2 += s; d3 += s; 

     x[u] = d0; x[u-1] = d1; u -= 4; 

     x[u+2] = d2; x[u+1] = d3; 

} 
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What Did The Compiler Have To Do? 

 Determine that it was legal to move the SD after the SUBI 

and BNEZ, and find the amount to adjust the SD offset 

 Determine that loop unrolling would be useful by discovering 

independence of loop iterations 

 Rename registers to avoid name dependences 

 Eliminate extra tests and branches and adjust loop control 

 Determine that LDs and SDs can be interchanged by 

determining that (since R1 is not being updated) the 

address specifiers 0(R1), -8(R1), -16(R1), -24(R1) all refer 

to different memory locations 

 Schedule the code, preserving dependences 

 Resources consumed: Code space, architectural registers 
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Dependences 

 Three kinds of dependences 

 Data dependence 

 Name dependence 

 Control dependence 

 In the context of loop-level parallelism, data dependence 

can be 

 Loop-independent 

 Loop-carried 

 Data dependences act as a limit of how much ILP can be 

exploited in a compiled program 

 Compiler tries to identify and eliminate dependences 

 Hardware tries to prevent dependences from becoming 

stalls 
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Data and Name Dependences 

 Instruction v is data-dependent on instruction u if  

 u produces a result that v consumes 

 Instruction v is anti-dependent on instruction u if  

 u precedes v 

 v writes a register or memory location that u reads 

 Instruction v is output-dependent on instruction u if 

 u precedes v 

 v writes a register or memory location that u writes 

 A data dependence that cannot be removed by renaming 

corresponds to a RAW hazard 

 Anti-dependence corresponds to a WAR hazard 

 Output dependence corresponds to a WAW hazard 
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Control Dependences 

 A control dependence determines the ordering of an 

instruction with respect to a branch instruction so that the 

non-branch instruction is executed only when it should be 

    if (p1) {s1;}  

    if (p2) {s2;} 

 Control dependence constrains code motion 

 An instruction that is control dependent on a branch cannot be 

moved before the branch so that its execution is no longer controlled 

by the branch 

 An instruction that is not control dependent on a branch cannot be 

moved after the branch so that its execution is controlled by the 

branch 
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Data Dependence in Loop Iterations 
A[u+1] = A[u]+C[u]; 

B[u+1] = B[u]+A[u+1]; 

A[u+1] = A[u]+C[u]; 

B[u+1] = B[u]+A[u+1]; 

A[u+2] = A[u+1]+C[u+1]; 

B[u+2] = B[u+1]+A[u+2]; 

A[u] = A[u]+B[u]; 

B[u+1] = C[u]+D[u]; 

A[u] = A[u]+B[u]; 

B[u+1] = C[u]+D[u]; 

A[u+1] = A[u+1]+B[u+1]; 

B[u+2] = C[u+1]+D[u+1]; 

B[u+1] = C[u]+D[u]; 

A[u+1] = A[u+1]+B[u+1]; 

B[u+1] = C[u]+D[u]; 

A[u+1] = A[u+1]+B[u+1]; 

B[u+2] = C[u+1]+D[u+1]; 

A[u+2] = A[u+2]+B[u+2]; 
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Loop Transformation 

A[u] = A[u]+B[u]; 

B[u+1] = C[u]+D[u]; 

 Sometimes loop-carried dependence does not prevent loop 

parallelization 

 Example: Second loop of previous slide 

 In other cases, loop-carried dependence prohibits loop parallelization 

 Example: First loop of previous slide 

A[u] = A[u]+B[u]; 

B[u+1] = C[u]+D[u]; 

A[u+1] = A[u+1]+B[u+1]; 

B[u+2] = C[u+1]+D[u+1]; 

A[u+2] = A[u+2]+B[u+2]; 

B[u+3] = C[u+2]+D[u+2]; 

A[u] = A[u]+B[u]; 

B[u+1] = C[u]+D[u]; 

A[u+1] = A[u+1]+B[u+1]; 

B[u+2] = C[u+1]+D[u+1]; 

A[u+2] = A[u+2]+B[u+2]; 

B[u+3] = C[u+2]+D[u+2]; 


