

Programming for Performance

Single-Thread Performance: Compiler

Scheduling for Pipelines

Adopted from

Siddhartha Chatterjee

Spring 2009

2

Review of Pipelining

 Pipelining improves throughput of an instruction sequence

but not the latency of an individual instruction

 Speedup due to pipelining limited by hazards

 Structural hazards lead to contention for limited resources

 Data hazards require stalling or forwarding to maintain sequential

semantics

 Control hazards require cancellation of instructions (to maintain

sequential branch semantics) or delayed branches (to define a new

branch semantics)

 Hazard

 Detection: interlocks in hardware

 Elimination: renaming, branch elimination

 Resolution: stalling, forwarding, scheduling

3

CPI of a Pipelined Machine

Pipeline CPI = Ideal pipeline CPI

 + Structural stalls

 + RAW stalls

 + WAR stalls

 + WAW stalls

 + Control stalls

Basic pipeline scheduling

Dynamic scheduling with scoreboarding

Dynamic memory disambiguation

 (for stalls involving memory)

Compiler dependence analysis

Software pipeline

Trace scheduling

Speculation

Dynamic scheduling

 with register renaming

Compiler dependence

 analysis

Software pipelining

Trace scheduling

Speculation

Loop unrolling

Dynamic branch prediction

Speculation

Predication

Issuing multiple instructions per cycle

Compiler dependence analysis

Software pipelining

Trace scheduling

4

Instruction-Level Parallelism (ILP)

 Pipelining is most effective when we have parallelism

among instructions

 Parallelism within a basic block is limited

 Branch frequency of 15% implies about six instructions in basic block

 These instructions are likely to depend on each other

 Need to look beyond basic blocks

 Loop-level parallelism

 Parallelism among iterations of a loop

 To convert loop-level parallelism into ILP, we need to “unroll” the

loop

• Statically, by the compiler

• Dynamically, by the hardware

• Using vector instructions

5

Motivating Example for Loop Unrolling
 for (u = 0; u < 1000; u++)

 x[u] = x[u] + s;

Assumptions

•Loop is being run backwards

•Scalar s is in register pair F2:F3

•Array x starts at memory address 0

•1-cycle branch delay

•No structural hazards

LOOP: LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 NOP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LD F D X M W

ADDD - F D E E E E M W

SD - - F D X M W

SUBI F D X M W

BNEZ - F D X M W

NOP -

LD F D X M W

10 cycles per iteration

 for (u = 999; u >= 0; u--)

 x[u] = x[u] + s;

6

How Far Can We Get With Scheduling?
LOOP: LD F0, 0(R1)

 SUBI R1, R1, 8

 ADDD F4, F0, F2

 BNEZ R1, LOOP

 SD 8(R1), F4

LOOP: LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 NOP

6 cycles per iteration

Note change in SD instruction, from 0(R1) to 8(R1); this is a non-trivial change.

 for (u = 999; u >= 0;){

 register double d = x[u];

 u--; d += s; x[u+1] = d;

}

1 2 3 4 5 6 7 8 9 10 11

LD F D X M W

SUBI F D X M W

ADDD F D E E E E M W

BNEZ F D X M W

SD - F D X M W

LD F D X M W

7

Observations on Scheduled Code

 3 out of 5 instructions involve FP work

 The other two constitute loop overhead

 Could we improve loop performance by unrolling the loop?

 Assume number of loop iterations is a multiple of 4, and

unroll loop body four times

 In real life, would need to handle the fact that loop trip count may not

be a multiple of 4

8

Unrolling: Take 1

LOOP: LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 This is not any different from

situation before unrolling

 Branches induce control

dependence

 Can’t move instructions much

during scheduling

 However, the whole point of

unrolling was to guarantee that

the three internal branches will

fall through

 So, maybe we can delete the

intermediate branches

 There is an implicit NOP after the

final branch

9

Unrolling: Take 2
 Even though we got rid of the control

dependences, we have flow

dependences through R1

 We could remove flow dependences

by observing that R1 is decremented

by 8 each time

 Adjust the address specifiers

 Delete the first three SUBIs

 Change the constant in the fourth

SUBI to 32

 These are non-trivial inferences for a

compiler to make

LOOP: LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 for (u = 999; u >= 0;){

 register double d;

 d = x[u]; d += s; x[u] = d; u--;

 d = x[u]; d += s; x[u] = d; u--;

 d = x[u]; d += s; x[u] = d; u--;

 d = x[u]; d += s; x[u] = d; u--;

}

10

Unrolling: Take 3

 Performance is now limited by the

anti-dependences and output

dependences on F0 and F4

 These are name dependences

 The instructions are not in a

producer-consumer relation

 They are simply using the same

registers, but they don’t have to

 We can use different registers in

different loop iterations, subject to

availability

 Let’s rename registers

LOOP: LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 LD F0, -8(R1)

 ADDD F4, F0, F2

 SD -8(R1), F4

 LD F0, -16(R1)

 ADDD F4, F0, F2

 SD -16(R1), F4

 LD F0, -24(R1)

 ADDD F4, F0, F2

 SD -24(R1), F4

 SUBI R1, R1, 32

 BNEZ R1, LOOP

 for (u = 999; u >= 0; u -= 4){

 register double d;

 d = x[u]; d += s; x[u] = d;

 d = x[u-1]; d += s; x[u-1] = d;

 d = x[u-2]; d += s; x[u-2] = d;

 d = x[u-3]; d += s; x[u-3] = d;

}

11

Unrolling: Take 4
LOOP: LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 LD F6, -8(R1)

 ADDD F8, F6, F2

 SD -8(R1), F8

 LD F10, -16(R1)

 ADDD F12, F10, F2

 SD -16(R1), F12

 LD F14, -24(R1)

 ADDD F16, F14, F2

 SD -24(R1), F16

 SUBI R1, R1, 32

 BNEZ R1, LOOP

 Time for execution of 4 iterations

 14 instruction cycles

 4 LDADDD stalls

 4 ADDDSD stalls (2 cycles each)

 1 SUBIBNEZ stall

 1 branch delay stall

 36 cycles for 4 iterations, or 9 cycles

per iteration

 Slower than scheduled version of

original loop

 Let’s schedule the unrolled loop

 for (u = 999; u >= 0; u -= 4){

 register double d0, d1, d2, d3;

 d0 = x[u]; d0 += s; x[u] = d0;

 d1 = x[u-1]; d1 += s; x[u-1] = d1;

 d2 = x[u-2]; d2 += s; x[u-2] = d2;

 d3 = x[u-3]; d3 += s; x[u-3] = d3;

}

12

Unrolling: Take 5
 This code runs without stalls

 14 cycles for 4 iterations

 3.5 cycles per iteration

 Performance is limited by loop

control overhead once every four

iterations

 Note that original loop had three FP

instructions that were not

independent

 Loop unrolling exposed independent

instructions from multiple loop

iterations

 By unrolling further, can approach

asymptotic rate of 3 cycles per

iteration

 Subject to availability of registers

LOOP: LD F0, 0(R1)

 LD F6, -8(R1)

 LD F10, -16(R1)

 LD F14, -24(R1)

 ADDD F4, F0, F2

 ADDD F8, F6, F2

 ADDD F12, F10, F2

 ADDD F16, F14, F2

 SD 0(R1), F4

 SD -8(R1), F8

 SUBI R1, R1, 32

 SD 16(R1), F12

 BNEZ R1, LOOP

 SD 8(R1), F16

 for (u = 999; u >= 0;){

 register double d0, d1, d2, d3;

 d0 = x[u]; d1 = x[u-1]; d2 = x[u-2]; d3 = x[u-3];

 d0 += s; d1 += s; d2 += s; d3 += s;

 x[u] = d0; x[u-1] = d1; u -= 4;

 x[u+2] = d2; x[u+1] = d3;

}

13

What Did The Compiler Have To Do?

 Determine that it was legal to move the SD after the SUBI

and BNEZ, and find the amount to adjust the SD offset

 Determine that loop unrolling would be useful by discovering

independence of loop iterations

 Rename registers to avoid name dependences

 Eliminate extra tests and branches and adjust loop control

 Determine that LDs and SDs can be interchanged by

determining that (since R1 is not being updated) the

address specifiers 0(R1), -8(R1), -16(R1), -24(R1) all refer

to different memory locations

 Schedule the code, preserving dependences

 Resources consumed: Code space, architectural registers

14

Dependences

 Three kinds of dependences

 Data dependence

 Name dependence

 Control dependence

 In the context of loop-level parallelism, data dependence

can be

 Loop-independent

 Loop-carried

 Data dependences act as a limit of how much ILP can be

exploited in a compiled program

 Compiler tries to identify and eliminate dependences

 Hardware tries to prevent dependences from becoming

stalls

15

Data and Name Dependences

 Instruction v is data-dependent on instruction u if

 u produces a result that v consumes

 Instruction v is anti-dependent on instruction u if

 u precedes v

 v writes a register or memory location that u reads

 Instruction v is output-dependent on instruction u if

 u precedes v

 v writes a register or memory location that u writes

 A data dependence that cannot be removed by renaming

corresponds to a RAW hazard

 Anti-dependence corresponds to a WAR hazard

 Output dependence corresponds to a WAW hazard

16

Control Dependences

 A control dependence determines the ordering of an

instruction with respect to a branch instruction so that the

non-branch instruction is executed only when it should be

 if (p1) {s1;}

 if (p2) {s2;}

 Control dependence constrains code motion

 An instruction that is control dependent on a branch cannot be

moved before the branch so that its execution is no longer controlled

by the branch

 An instruction that is not control dependent on a branch cannot be

moved after the branch so that its execution is controlled by the

branch

17

Data Dependence in Loop Iterations
A[u+1] = A[u]+C[u];

B[u+1] = B[u]+A[u+1];

A[u+1] = A[u]+C[u];

B[u+1] = B[u]+A[u+1];

A[u+2] = A[u+1]+C[u+1];

B[u+2] = B[u+1]+A[u+2];

A[u] = A[u]+B[u];

B[u+1] = C[u]+D[u];

A[u] = A[u]+B[u];

B[u+1] = C[u]+D[u];

A[u+1] = A[u+1]+B[u+1];

B[u+2] = C[u+1]+D[u+1];

B[u+1] = C[u]+D[u];

A[u+1] = A[u+1]+B[u+1];

B[u+1] = C[u]+D[u];

A[u+1] = A[u+1]+B[u+1];

B[u+2] = C[u+1]+D[u+1];

A[u+2] = A[u+2]+B[u+2];

18

Loop Transformation

A[u] = A[u]+B[u];

B[u+1] = C[u]+D[u];

 Sometimes loop-carried dependence does not prevent loop

parallelization

 Example: Second loop of previous slide

 In other cases, loop-carried dependence prohibits loop parallelization

 Example: First loop of previous slide

A[u] = A[u]+B[u];

B[u+1] = C[u]+D[u];

A[u+1] = A[u+1]+B[u+1];

B[u+2] = C[u+1]+D[u+1];

A[u+2] = A[u+2]+B[u+2];

B[u+3] = C[u+2]+D[u+2];

A[u] = A[u]+B[u];

B[u+1] = C[u]+D[u];

A[u+1] = A[u+1]+B[u+1];

B[u+2] = C[u+1]+D[u+1];

A[u+2] = A[u+2]+B[u+2];

B[u+3] = C[u+2]+D[u+2];

