

Programming for Performance

Single-Thread Performance: Compiler

Scheduling for Pipelines

Adopted from

Siddhartha Chatterjee

Spring 2009

2

Review of Pipelining

 Pipelining improves throughput of an instruction sequence

but not the latency of an individual instruction

 Speedup due to pipelining limited by hazards

 Structural hazards lead to contention for limited resources

 Data hazards require stalling or forwarding to maintain sequential

semantics

 Control hazards require cancellation of instructions (to maintain

sequential branch semantics) or delayed branches (to define a new

branch semantics)

 Hazard

 Detection: interlocks in hardware

 Elimination: renaming, branch elimination

 Resolution: stalling, forwarding, scheduling

3

CPI of a Pipelined Machine

Pipeline CPI = Ideal pipeline CPI

 + Structural stalls

 + RAW stalls

 + WAR stalls

 + WAW stalls

 + Control stalls

Basic pipeline scheduling

Dynamic scheduling with scoreboarding

Dynamic memory disambiguation

 (for stalls involving memory)

Compiler dependence analysis

Software pipeline

Trace scheduling

Speculation

Dynamic scheduling

 with register renaming

Compiler dependence

 analysis

Software pipelining

Trace scheduling

Speculation

Loop unrolling

Dynamic branch prediction

Speculation

Predication

Issuing multiple instructions per cycle

Compiler dependence analysis

Software pipelining

Trace scheduling

4

Instruction-Level Parallelism (ILP)

 Pipelining is most effective when we have parallelism

among instructions

 Parallelism within a basic block is limited

 Branch frequency of 15% implies about six instructions in basic block

 These instructions are likely to depend on each other

 Need to look beyond basic blocks

 Loop-level parallelism

 Parallelism among iterations of a loop

 To convert loop-level parallelism into ILP, we need to “unroll” the

loop

• Statically, by the compiler

• Dynamically, by the hardware

• Using vector instructions

5

Motivating Example for Loop Unrolling
 for (u = 0; u < 1000; u++)

 x[u] = x[u] + s;

Assumptions

•Loop is being run backwards

•Scalar s is in register pair F2:F3

•Array x starts at memory address 0

•1-cycle branch delay

•No structural hazards

LOOP: LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 NOP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LD F D X M W

ADDD - F D E E E E M W

SD - - F D X M W

SUBI F D X M W

BNEZ - F D X M W

NOP -

LD F D X M W

10 cycles per iteration

 for (u = 999; u >= 0; u--)

 x[u] = x[u] + s;

6

How Far Can We Get With Scheduling?
LOOP: LD F0, 0(R1)

 SUBI R1, R1, 8

 ADDD F4, F0, F2

 BNEZ R1, LOOP

 SD 8(R1), F4

LOOP: LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 NOP

6 cycles per iteration

Note change in SD instruction, from 0(R1) to 8(R1); this is a non-trivial change.

 for (u = 999; u >= 0;){

 register double d = x[u];

 u--; d += s; x[u+1] = d;

}

1 2 3 4 5 6 7 8 9 10 11

LD F D X M W

SUBI F D X M W

ADDD F D E E E E M W

BNEZ F D X M W

SD - F D X M W

LD F D X M W

7

Observations on Scheduled Code

 3 out of 5 instructions involve FP work

 The other two constitute loop overhead

 Could we improve loop performance by unrolling the loop?

 Assume number of loop iterations is a multiple of 4, and

unroll loop body four times

 In real life, would need to handle the fact that loop trip count may not

be a multiple of 4

8

Unrolling: Take 1

LOOP: LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 This is not any different from

situation before unrolling

 Branches induce control

dependence

 Can’t move instructions much

during scheduling

 However, the whole point of

unrolling was to guarantee that

the three internal branches will

fall through

 So, maybe we can delete the

intermediate branches

 There is an implicit NOP after the

final branch

9

Unrolling: Take 2
 Even though we got rid of the control

dependences, we have flow

dependences through R1

 We could remove flow dependences

by observing that R1 is decremented

by 8 each time

 Adjust the address specifiers

 Delete the first three SUBIs

 Change the constant in the fourth

SUBI to 32

 These are non-trivial inferences for a

compiler to make

LOOP: LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 SUBI R1, R1, 8

 BNEZ R1, LOOP

 for (u = 999; u >= 0;){

 register double d;

 d = x[u]; d += s; x[u] = d; u--;

 d = x[u]; d += s; x[u] = d; u--;

 d = x[u]; d += s; x[u] = d; u--;

 d = x[u]; d += s; x[u] = d; u--;

}

10

Unrolling: Take 3

 Performance is now limited by the

anti-dependences and output

dependences on F0 and F4

 These are name dependences

 The instructions are not in a

producer-consumer relation

 They are simply using the same

registers, but they don’t have to

 We can use different registers in

different loop iterations, subject to

availability

 Let’s rename registers

LOOP: LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 LD F0, -8(R1)

 ADDD F4, F0, F2

 SD -8(R1), F4

 LD F0, -16(R1)

 ADDD F4, F0, F2

 SD -16(R1), F4

 LD F0, -24(R1)

 ADDD F4, F0, F2

 SD -24(R1), F4

 SUBI R1, R1, 32

 BNEZ R1, LOOP

 for (u = 999; u >= 0; u -= 4){

 register double d;

 d = x[u]; d += s; x[u] = d;

 d = x[u-1]; d += s; x[u-1] = d;

 d = x[u-2]; d += s; x[u-2] = d;

 d = x[u-3]; d += s; x[u-3] = d;

}

11

Unrolling: Take 4
LOOP: LD F0, 0(R1)

 ADDD F4, F0, F2

 SD 0(R1), F4

 LD F6, -8(R1)

 ADDD F8, F6, F2

 SD -8(R1), F8

 LD F10, -16(R1)

 ADDD F12, F10, F2

 SD -16(R1), F12

 LD F14, -24(R1)

 ADDD F16, F14, F2

 SD -24(R1), F16

 SUBI R1, R1, 32

 BNEZ R1, LOOP

 Time for execution of 4 iterations

 14 instruction cycles

 4 LDADDD stalls

 4 ADDDSD stalls (2 cycles each)

 1 SUBIBNEZ stall

 1 branch delay stall

 36 cycles for 4 iterations, or 9 cycles

per iteration

 Slower than scheduled version of

original loop

 Let’s schedule the unrolled loop

 for (u = 999; u >= 0; u -= 4){

 register double d0, d1, d2, d3;

 d0 = x[u]; d0 += s; x[u] = d0;

 d1 = x[u-1]; d1 += s; x[u-1] = d1;

 d2 = x[u-2]; d2 += s; x[u-2] = d2;

 d3 = x[u-3]; d3 += s; x[u-3] = d3;

}

12

Unrolling: Take 5
 This code runs without stalls

 14 cycles for 4 iterations

 3.5 cycles per iteration

 Performance is limited by loop

control overhead once every four

iterations

 Note that original loop had three FP

instructions that were not

independent

 Loop unrolling exposed independent

instructions from multiple loop

iterations

 By unrolling further, can approach

asymptotic rate of 3 cycles per

iteration

 Subject to availability of registers

LOOP: LD F0, 0(R1)

 LD F6, -8(R1)

 LD F10, -16(R1)

 LD F14, -24(R1)

 ADDD F4, F0, F2

 ADDD F8, F6, F2

 ADDD F12, F10, F2

 ADDD F16, F14, F2

 SD 0(R1), F4

 SD -8(R1), F8

 SUBI R1, R1, 32

 SD 16(R1), F12

 BNEZ R1, LOOP

 SD 8(R1), F16

 for (u = 999; u >= 0;){

 register double d0, d1, d2, d3;

 d0 = x[u]; d1 = x[u-1]; d2 = x[u-2]; d3 = x[u-3];

 d0 += s; d1 += s; d2 += s; d3 += s;

 x[u] = d0; x[u-1] = d1; u -= 4;

 x[u+2] = d2; x[u+1] = d3;

}

13

What Did The Compiler Have To Do?

 Determine that it was legal to move the SD after the SUBI

and BNEZ, and find the amount to adjust the SD offset

 Determine that loop unrolling would be useful by discovering

independence of loop iterations

 Rename registers to avoid name dependences

 Eliminate extra tests and branches and adjust loop control

 Determine that LDs and SDs can be interchanged by

determining that (since R1 is not being updated) the

address specifiers 0(R1), -8(R1), -16(R1), -24(R1) all refer

to different memory locations

 Schedule the code, preserving dependences

 Resources consumed: Code space, architectural registers

14

Dependences

 Three kinds of dependences

 Data dependence

 Name dependence

 Control dependence

 In the context of loop-level parallelism, data dependence

can be

 Loop-independent

 Loop-carried

 Data dependences act as a limit of how much ILP can be

exploited in a compiled program

 Compiler tries to identify and eliminate dependences

 Hardware tries to prevent dependences from becoming

stalls

15

Data and Name Dependences

 Instruction v is data-dependent on instruction u if

 u produces a result that v consumes

 Instruction v is anti-dependent on instruction u if

 u precedes v

 v writes a register or memory location that u reads

 Instruction v is output-dependent on instruction u if

 u precedes v

 v writes a register or memory location that u writes

 A data dependence that cannot be removed by renaming

corresponds to a RAW hazard

 Anti-dependence corresponds to a WAR hazard

 Output dependence corresponds to a WAW hazard

16

Control Dependences

 A control dependence determines the ordering of an

instruction with respect to a branch instruction so that the

non-branch instruction is executed only when it should be

 if (p1) {s1;}

 if (p2) {s2;}

 Control dependence constrains code motion

 An instruction that is control dependent on a branch cannot be

moved before the branch so that its execution is no longer controlled

by the branch

 An instruction that is not control dependent on a branch cannot be

moved after the branch so that its execution is controlled by the

branch

17

Data Dependence in Loop Iterations
A[u+1] = A[u]+C[u];

B[u+1] = B[u]+A[u+1];

A[u+1] = A[u]+C[u];

B[u+1] = B[u]+A[u+1];

A[u+2] = A[u+1]+C[u+1];

B[u+2] = B[u+1]+A[u+2];

A[u] = A[u]+B[u];

B[u+1] = C[u]+D[u];

A[u] = A[u]+B[u];

B[u+1] = C[u]+D[u];

A[u+1] = A[u+1]+B[u+1];

B[u+2] = C[u+1]+D[u+1];

B[u+1] = C[u]+D[u];

A[u+1] = A[u+1]+B[u+1];

B[u+1] = C[u]+D[u];

A[u+1] = A[u+1]+B[u+1];

B[u+2] = C[u+1]+D[u+1];

A[u+2] = A[u+2]+B[u+2];

18

Loop Transformation

A[u] = A[u]+B[u];

B[u+1] = C[u]+D[u];

 Sometimes loop-carried dependence does not prevent loop

parallelization

 Example: Second loop of previous slide

 In other cases, loop-carried dependence prohibits loop parallelization

 Example: First loop of previous slide

A[u] = A[u]+B[u];

B[u+1] = C[u]+D[u];

A[u+1] = A[u+1]+B[u+1];

B[u+2] = C[u+1]+D[u+1];

A[u+2] = A[u+2]+B[u+2];

B[u+3] = C[u+2]+D[u+2];

A[u] = A[u]+B[u];

B[u+1] = C[u]+D[u];

A[u+1] = A[u+1]+B[u+1];

B[u+2] = C[u+1]+D[u+1];

A[u+2] = A[u+2]+B[u+2];

B[u+3] = C[u+2]+D[u+2];

