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Review of Pipelining 

 Pipelining improves throughput of an instruction sequence 

but not the latency of an individual instruction 

 Speedup due to pipelining limited by hazards 

 Structural hazards lead to contention for limited resources 

 Data hazards require stalling or forwarding to maintain sequential 

semantics 

 Control hazards require cancellation of instructions (to maintain 

sequential branch semantics) or delayed branches (to define a new 

branch semantics) 

 Hazard 

 Detection: interlocks in hardware 

 Elimination: renaming, branch elimination 

 Resolution: stalling, forwarding, scheduling 
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CPI of a Pipelined Machine 

Pipeline CPI = Ideal pipeline CPI 

                     + Structural stalls 

                     + RAW stalls 

                     + WAR stalls 

                     + WAW stalls 

                     + Control stalls 

Basic pipeline scheduling 

Dynamic scheduling with scoreboarding 

Dynamic memory disambiguation 

    (for stalls involving memory) 

Compiler dependence analysis 

Software pipeline 

Trace scheduling 

Speculation 

Dynamic scheduling 

   with register renaming 

Compiler dependence  

    analysis 

Software pipelining 

Trace scheduling 

Speculation 

Loop unrolling 

Dynamic branch prediction 

Speculation 

Predication 

Issuing multiple instructions per cycle 

Compiler dependence analysis 

Software pipelining 

Trace scheduling 
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Instruction-Level Parallelism (ILP) 

 Pipelining is most effective when we have parallelism 

among instructions 

 Parallelism within a basic block is limited 

 Branch frequency of 15% implies about six instructions in basic block 

 These instructions are likely to depend on each other 

 Need to look beyond basic blocks 

 Loop-level parallelism 

 Parallelism among iterations of a loop 

 To convert loop-level parallelism into ILP, we need to “unroll” the 

loop 

•  Statically, by the compiler 

•  Dynamically, by the hardware 

•  Using vector instructions 
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Motivating Example for Loop Unrolling 
 for (u = 0; u < 1000; u++) 

     x[u] = x[u] + s; 

Assumptions 

•Loop is being run backwards 

•Scalar s is in register pair F2:F3 

•Array x starts at memory address 0 

•1-cycle branch delay 

•No structural hazards 

LOOP: LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP 

      NOP 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LD F D X M W

ADDD - F D E E E E M W

SD - - F D X M W

SUBI F D X M W

BNEZ - F D X M W

NOP -

LD F D X M W

10 cycles per iteration 

 for (u = 999; u >= 0; u--) 

     x[u] = x[u] + s; 



6 

How Far Can We Get With Scheduling? 
LOOP: LD F0, 0(R1) 

      SUBI R1, R1, 8 

      ADDD F4, F0, F2 

      BNEZ R1, LOOP 

      SD       8(R1), F4 

LOOP: LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP 

      NOP 

6 cycles per iteration 

Note change in SD instruction, from 0(R1) to 8(R1); this is a non-trivial change. 

 for (u = 999; u >= 0; ){ 

     register double d = x[u]; 

     u--; d += s; x[u+1] = d; 

} 

1 2 3 4 5 6 7 8 9 10 11

LD F D X M W

SUBI F D X M W

ADDD F D E E E E M W

BNEZ F D X M W

SD - F D X M W

LD F D X M W
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Observations on Scheduled Code 

 3 out of 5 instructions involve FP work 

 The other two constitute loop overhead 

 Could we improve loop performance by unrolling the loop? 

 Assume number of loop iterations is a multiple of 4, and 

unroll loop body four times 

 In real life, would need to handle the fact that loop trip count may not 

be a multiple of 4 
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Unrolling: Take 1 

LOOP: LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP  

      LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP 

      LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP 

      LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP 

 This is not any different from 

situation before unrolling 

 Branches induce control 

dependence 

 Can’t move instructions much 

during scheduling 

 However, the whole point of 

unrolling was to guarantee that 

the three internal branches will 

fall through 

 So, maybe we can delete the 

intermediate branches 

 There is an implicit NOP after the 

final branch 
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Unrolling: Take 2 
 Even though we got rid of the control 

dependences, we have flow 

dependences through R1 

 We could remove flow dependences 

by observing that R1 is decremented 

by 8 each time 

 Adjust the address specifiers 

 Delete the first three SUBIs 

 Change the constant in the fourth 

SUBI to 32 

 These are non-trivial inferences for a 

compiler to make 

LOOP: LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      SUBI R1, R1, 8 

      BNEZ R1, LOOP 

 for (u = 999; u >= 0; ){ 

     register double d; 

     d = x[u]; d += s; x[u] = d; u--; 

     d = x[u]; d += s; x[u] = d; u--; 

     d = x[u]; d += s; x[u] = d; u--; 

     d = x[u]; d += s; x[u] = d; u--; 

} 
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Unrolling: Take 3 

 Performance is now limited by the 

anti-dependences and output 

dependences on F0 and F4 

 These are name dependences 

 The instructions are not in a 

producer-consumer relation 

 They are simply using the same 

registers, but they don’t have to 

 We can use different registers in 

different loop iterations, subject to 

availability 

 Let’s rename registers 

LOOP: LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      LD F0, -8(R1) 

      ADDD F4, F0, F2 

      SD       -8(R1), F4 

      LD F0, -16(R1) 

      ADDD F4, F0, F2 

      SD       -16(R1), F4 

      LD F0, -24(R1) 

      ADDD F4, F0, F2 

      SD       -24(R1), F4 

      SUBI R1, R1, 32 

      BNEZ R1, LOOP 

 for (u = 999; u >= 0; u -= 4){ 

     register double d; 

     d = x[u]; d += s; x[u] = d; 

     d = x[u-1]; d += s; x[u-1] = d; 

     d = x[u-2]; d += s; x[u-2] = d; 

     d = x[u-3]; d += s; x[u-3] = d; 

} 
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Unrolling: Take 4 
LOOP: LD F0, 0(R1) 

      ADDD F4, F0, F2 

      SD       0(R1), F4 

      LD F6, -8(R1) 

      ADDD F8, F6, F2 

      SD       -8(R1), F8 

      LD F10, -16(R1) 

      ADDD F12, F10, F2 

      SD       -16(R1), F12 

      LD F14, -24(R1) 

      ADDD F16, F14, F2 

      SD       -24(R1), F16 

      SUBI R1, R1, 32 

      BNEZ R1, LOOP 

 Time for execution of 4 iterations 

 14 instruction cycles 

 4 LDADDD stalls 

 4 ADDDSD stalls (2 cycles each) 

 1 SUBIBNEZ stall 

 1 branch delay stall 

 36 cycles for 4 iterations, or 9 cycles 

per iteration 

 Slower than scheduled version of 

original loop 

 Let’s schedule the unrolled loop 

 for (u = 999; u >= 0; u -= 4){ 

     register double d0, d1, d2, d3; 

     d0 = x[u]; d0 += s; x[u] = d0; 

     d1 = x[u-1]; d1 += s; x[u-1] = d1; 

     d2 = x[u-2]; d2 += s; x[u-2] = d2; 

     d3 = x[u-3]; d3 += s; x[u-3] = d3; 

} 
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Unrolling: Take 5 
 This code runs without stalls 

 14 cycles for 4 iterations 

 3.5 cycles per iteration 

 Performance is limited by loop 

control overhead once every four 

iterations 

 Note that original loop had three FP 

instructions that were not 

independent 

 Loop unrolling exposed independent 

instructions from multiple loop 

iterations 

 By unrolling further, can approach 

asymptotic rate of 3 cycles per 

iteration 

 Subject to availability of registers 

LOOP: LD F0, 0(R1) 

      LD F6, -8(R1) 

      LD F10, -16(R1) 

      LD F14, -24(R1) 

      ADDD F4, F0, F2 

      ADDD F8, F6, F2 

      ADDD F12, F10, F2 

      ADDD F16, F14, F2 

      SD       0(R1), F4 

      SD       -8(R1), F8 

      SUBI R1, R1, 32 

      SD       16(R1), F12 

      BNEZ R1, LOOP 

      SD       8(R1), F16 

 for (u = 999; u >= 0; ){ 

     register double d0, d1, d2, d3; 

     d0 = x[u]; d1 = x[u-1]; d2 = x[u-2]; d3 = x[u-3]; 

     d0 += s; d1 += s; d2 += s; d3 += s; 

     x[u] = d0; x[u-1] = d1; u -= 4; 

     x[u+2] = d2; x[u+1] = d3; 

} 
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What Did The Compiler Have To Do? 

 Determine that it was legal to move the SD after the SUBI 

and BNEZ, and find the amount to adjust the SD offset 

 Determine that loop unrolling would be useful by discovering 

independence of loop iterations 

 Rename registers to avoid name dependences 

 Eliminate extra tests and branches and adjust loop control 

 Determine that LDs and SDs can be interchanged by 

determining that (since R1 is not being updated) the 

address specifiers 0(R1), -8(R1), -16(R1), -24(R1) all refer 

to different memory locations 

 Schedule the code, preserving dependences 

 Resources consumed: Code space, architectural registers 
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Dependences 

 Three kinds of dependences 

 Data dependence 

 Name dependence 

 Control dependence 

 In the context of loop-level parallelism, data dependence 

can be 

 Loop-independent 

 Loop-carried 

 Data dependences act as a limit of how much ILP can be 

exploited in a compiled program 

 Compiler tries to identify and eliminate dependences 

 Hardware tries to prevent dependences from becoming 

stalls 
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Data and Name Dependences 

 Instruction v is data-dependent on instruction u if  

 u produces a result that v consumes 

 Instruction v is anti-dependent on instruction u if  

 u precedes v 

 v writes a register or memory location that u reads 

 Instruction v is output-dependent on instruction u if 

 u precedes v 

 v writes a register or memory location that u writes 

 A data dependence that cannot be removed by renaming 

corresponds to a RAW hazard 

 Anti-dependence corresponds to a WAR hazard 

 Output dependence corresponds to a WAW hazard 
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Control Dependences 

 A control dependence determines the ordering of an 

instruction with respect to a branch instruction so that the 

non-branch instruction is executed only when it should be 

    if (p1) {s1;}  

    if (p2) {s2;} 

 Control dependence constrains code motion 

 An instruction that is control dependent on a branch cannot be 

moved before the branch so that its execution is no longer controlled 

by the branch 

 An instruction that is not control dependent on a branch cannot be 

moved after the branch so that its execution is controlled by the 

branch 
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Data Dependence in Loop Iterations 
A[u+1] = A[u]+C[u]; 

B[u+1] = B[u]+A[u+1]; 

A[u+1] = A[u]+C[u]; 

B[u+1] = B[u]+A[u+1]; 

A[u+2] = A[u+1]+C[u+1]; 

B[u+2] = B[u+1]+A[u+2]; 

A[u] = A[u]+B[u]; 

B[u+1] = C[u]+D[u]; 

A[u] = A[u]+B[u]; 

B[u+1] = C[u]+D[u]; 

A[u+1] = A[u+1]+B[u+1]; 

B[u+2] = C[u+1]+D[u+1]; 

B[u+1] = C[u]+D[u]; 

A[u+1] = A[u+1]+B[u+1]; 

B[u+1] = C[u]+D[u]; 

A[u+1] = A[u+1]+B[u+1]; 

B[u+2] = C[u+1]+D[u+1]; 

A[u+2] = A[u+2]+B[u+2]; 
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Loop Transformation 

A[u] = A[u]+B[u]; 

B[u+1] = C[u]+D[u]; 

 Sometimes loop-carried dependence does not prevent loop 

parallelization 

 Example: Second loop of previous slide 

 In other cases, loop-carried dependence prohibits loop parallelization 

 Example: First loop of previous slide 

A[u] = A[u]+B[u]; 

B[u+1] = C[u]+D[u]; 

A[u+1] = A[u+1]+B[u+1]; 

B[u+2] = C[u+1]+D[u+1]; 

A[u+2] = A[u+2]+B[u+2]; 

B[u+3] = C[u+2]+D[u+2]; 

A[u] = A[u]+B[u]; 

B[u+1] = C[u]+D[u]; 

A[u+1] = A[u+1]+B[u+1]; 

B[u+2] = C[u+1]+D[u+1]; 

A[u+2] = A[u+2]+B[u+2]; 

B[u+3] = C[u+2]+D[u+2]; 


