
X-Ray: A Tool for Automatic Measurement of
Hardware Parameters

Kamen Yotov, Keshav Pingali, Paul Stodghill,
{kyotov,pingali,stodghil}@cs.cornell.edu

Department of Computer Science,
Cornell University, Ithaca, NY 14853

Abstract

There is growing interest in self-optimizing comput-
ing systems that can optimize their own behavior on
different platforms without manual intervention. Ex-
amples of successful self-optimizing systems are AT-
LAS, which generates Basic Linear Algebra Subroutine
(BLAS) Libraries, and FFTW, which generates FFT li-
braries.

Self-optimizing systems need values for hardware
parameters such as the number of registers of various
types and the capacities of caches at various levels. For
example, ATLAS uses the capacity of the L1 cache and
the number of registers in determining the size of cache
tiles and register tiles.

In this paper, we describe X-Ray1, a system for im-
plementing micro-benchmarks to measure such hard-
ware parameters. We also present novel algorithms
for measuring some of these parameters. Experimen-
tal evaluations of X-Ray on traditional workstations,
servers and embedded systems show that X-Ray pro-
duces more accurate and complete results than existing
tools.

1. Introduction

There is growing interest in self-optimizing systems
that can optimize their own behavior on different plat-
forms without manual intervention [9, 3, 6]. These
systems are based on the generate-and-test paradigm:
instead of writing a program, one implements a pro-
gram generator that produces a large number of pro-
gram variants, and determines empirically which vari-
ant performs best. To prevent a combinatorial explosion

1This work was supported by an IBM Faculty Partnership Award,
DARPA grant NBCH30390004, and by NSF grants ACI-0085969,
ACI-0090217, ACI-0103723, ACI-0121401, and ACI-0406345.

in the number of program variants that have to be con-
sidered, self-optimizing systems bound the search space
by using hardware parameters values such as the num-
ber of registers and the capacity of the L1 cache [9, 10].

For software to be truly self-optimizing, the values
of hardware parameters relevant for software optimiza-
tion must be determined automatically. It is important
to note that these values are not necessarily the same as
the values one might find in a hardware manual. For ex-
ample, loop unrolling must take into account the num-
ber of registers available to hold values computed in the
loop body. However, most compilers set aside certain
registers for holding special values such as the stack or
frame pointer, so the number of registers available to
the register allocator is usually less than the total num-
ber of architected registers. In practice, it is hard to find
documentation even for hardware parameter values, let
alone for values relevant to software optimization.

In this paper, we describe X-Ray, a framework for
implementing micro-benchmarks to measure relevant
values of hardware parameters automatically. For porta-
bility, X-Ray is entirely implemented in ANSI C’89.
One of the interesting challenges of this approach is to
ensure that the C compiler does not perform any high-
level restructuring optimizations on our benchmarks
that might pollute the timing results, while performance
critical optimizations, such as register allocation, are
still enabled.

2. The X-Ray Framework

Hardware parameters are measured by X-Raymicro-
benchmarks. Figure 1 presents the general structure of
a micro-benchmark in the X-Ray framework.

As an example, consider the measurement of the
number of available registers of a particular data typeT .
One way to determine this value is to perform a number
of experiments, all of which perform the same computa-



Nano-benchmark
SpecificationControl

Engine

Nano-

benchmark

Generator

Compile,

Execute, 

Time

Nano-benchmark
C Code

Execution Time

Micro-benchmark
Parameters

Hardware 
Parameter Value

Figure 1. A micro-benchmark in X-Ray

tions but on a different number of variables(N) of type
T . WhenN exceeds the number of available registers
for type T , not all variables can be register allocated,
and execution time should increase substantially. The
number of available registers can be inferred from this
cross-over point.

Some general conclusions can be drawn from this
example. A micro-benchmark to determine the value of
some parameter may need to time a number of differ-
ent but related programs that we callnano-benchmarks.
Since there may be noa priori bound on the number of
required nano-benchmarks, we need aNano-benchmark
Generator, which can produceNano-benchmark C
Code from a high-levelNano-benchmark Specifica-
tion. Finally, generation should happen on-the-fly since
the results of one nano-benchmark may determine the
nano-benchmark to be executed next.

In X-Ray, the execution of a micro-benchmark is
orchestrated by itsControl Engine, which chooses the
nano-benchmarks to execute, the order in which they
should be executed, and the appropriate parameters for
each one. The Control Engine determines the value of
the hardware parameter based on these timing results.

Some micro-benchmarks may also need the results
obtained from running other micro-benchmarks. For
example, to determine the latency of an instruction in
cycles rather than in nanoseconds, the control engine
needs to know the cycle time of the processor. This can
be specified by the user or it can be measured by another
micro-benchmark, as discussed in Section 3.

2.1. Nano-benchmarks

Even with access to a high-resolution timer, it is hard
to accurately time operations that take only a few CPU
cycles to execute. Suppose we want to measure the time
required to execute a C statementS. If this time is small
compared to the granularity of the timer, we must mea-
sure the time required to execute this statement some
number of timesRS (dependent onS), and divide that
time byRS . If RS is too small, the time for execution
cannot be measured accurately, whereas ifRS is too

big, the experiment will take longer than it needs to.

RS ← 1;
while (measureS (RS) < tmin)

RS ← RS × 2;
return (measureS (RS)÷ RS);

Figure 2. Nano-benchmark timing

Figure 2 shows the timing strategy used in X-Ray
nano-benchmarks. In this code,measureS(RS)
measures the time required to executeRS repetitions of
statementS. To determine a reasonable value forRS ,
the code in Figure 2 starts by settingRS to 1, and then
doubles it until the experiment runs for at leasttmin sec-
onds. The value oftmin can be specified by the user and
defaults to 0.25 seconds in the current implementation.

A simplistic implementation ofmeasureS is shown
in Figure 3(a). This code incurs considerable loop over-
head, so we unroll the loopU times (Figure 3(b)).

Another problem is that restructuring compiler op-
timizations may corrupt the experiment. For exam-
ple, consider the case when we want to measure the
latency of a single addition. In our framework, we
would measure the time taken to execute the C state-
mentp0 = p0 + p1. It is important to allocatep0 and
p1 in registers, but it is crucial that the compiler not re-
place theU statements in the loop body by the statement
p0 = p0 + U × p1, since this would prevent the code
from timing the original statement correctly.

To solve such problems, we need to generate pro-
grams which the compiler can aggressively optimize
without disrupting the sequence of operations whose
execution time we want to measure. We solve this prob-
lem using aswitch statement on avolatile vari-
able v as shown in Figure 3(c). The semantics of C
require thatv be read from memory; therefore the com-
piler cannot assume anything about whichcase of the
switch is selected. Because there is potential control
flow to each of thecase blocks, it is impossible for the
compiler to combine or reorder them in any way.

The final problem is that if the compiler is able to
deduce that the result of the computations performed
in S is not used in the rest of the code, it might per-
form dead-code elimination and remove all instances of
S altogether. To prevent this unwanted optimization, all
variables that appear inS are assigned to values read
from appropriately typedvolatile variables in the
initialize statement; similarly, their final values
are copied back to the samevolatile variables in
theuse statement.

As we will see in Section 3, there are cases where we
wish to measure the performance of a sequence of dif-
ferent statementsS1, S2, . . . , Sn. To prevent the com-
piler from optimizing this sequence, the code generator



measureS(R) {
ts = now();
i = R;

loop: S;
if (--i)

goto loop;
te = now();
return te − ts;

}
(a)

measureS(R) {
ts = now();
i = R / U;

loop:
S;
S;
...repeat U

times...
S;
if (--i)

goto loop;
te = now();
return te − ts;

}
(b)

measureS(R) {
initialize;
volatile int v = 0;
switch (v)
{
case 0:

i = R/U;
ts = now();

loop:
case 1: S;
case 2: S;
...
case U: S;

if (--i)
goto loop;

te = now();
if (!v)

return te − ts;
}
use;

}
(c)

measureS(R) {
initialize;
volatile int v = 0;
switch (v)
{
case 0:

i = R/U;
ts = now();

loop:
case 1: S1;
case 2: S2;
...
case i: Si;
...
case n: Sn;
case n + 1: S1;
...
case W: Sn;

if (--i)
goto loop;

te = now();
if (!v)

return te − ts;
}
use;

}
(d)

Figure 3. Implementation of measureS

will give eachSi a different case label, generating code
of the form shown in Figure 3(d). In this figure, the
number of case labelsW is the smallest multiple ofn
greater than or equal toU .

2.2. Nano-benchmark Generator

The X-Ray nano-benchmark generator accepts as
an input a nano-benchmark specification and produces
nano-benchmark C code structured as shown in Fig-
ures 3(c),3(d).

The nano-benchmark specification is a tuple which
contains a statementS to be timed and type infor-
mation for all variables inS. For example, to mea-
sure the latency of double-precision floating point ADD
operation, we use the nano-benchmark specification
〈p1 = p1 + p2, 〈p1, p2 : F64〉〉, which means that we
time the statementp1 = p1 + p2, wherep1 and p2

are variables of type double (defined asF64 in X-Ray).
Given this specification, the nano-benchmark generator
can produce code as shown in Figure 3(c). Generating
code of the form shown in Figure 3(d) is more complex
and requires the first element of the tuple to be a func-
tion f : integer→ string, which computes the code for
statementSi from the case labeli.

2.3. Implementing a new micro-benchmark

As we will see in Section 3, implementing a new
micro-benchmark in X-Ray requires:

1. Implementing the nano-benchmarks for all tim-
ing experiments. If their code fits the template
in Figure 3(d), nano-benchmark specifications are
enough;

2. Implementing the micro-benchmark control en-
gine to describe which nano-benchmarks to run,
with what parameters, in what order, and how to
produce a final result from the external parameters
and the timings.

3. CPU Micro-benchmarks

3.1. CPU Frequency

CPU frequency (FCPU) is an important hardware pa-
rameter because other parameters are measured relative
to it (in clock cycles). X-Ray assumes that dependent
integer additions can be executed at the rate of one per
cycle, which is valid for most current processors. The
assumption of dependence is important because mod-
ern architectures can often issue two or more indepen-
dent integer addition operations in one cycle, so timing
independent addition operations would be misleading.

For this micro-benchmark we use a nano-benchmark
with specificationS = 〈p0 = p0 + p1, 〈p0, p1 : int〉〉.
Given the timetime (S) in nanseconds required to ex-
ecute the statementS, we compute the CPU frequency
in MHz asFCPU ← 1000÷ time (S).

As we will see in Section 5, the assumption that de-
pendent integer additions are executed at the rate of one



per cycle may not be correct for some processors. In
that case, all timing measurements reported by X-Ray
must be scaled by an appropriate constant to obtain the
actual values. This is not a serious problem since self-
optimizing software uses timing measurements mostly
to choose between different code sequences, so relative
rather than absolute times are needed.

3.2. Instruction Latency

The latencyLO,T of an operation (instruction)O,
with operands of typeT , is the number of cycles af-
ter one such instruction is dispatched until its result be-
comes available to subsequent dependent instructions.

We use a nano-benchmark with specification
SO,T = 〈p0 = O(p0, p1), 〈p0, p1 : T 〉〉. We then
compute the instruction latency in clock cycles as
LO,T ← time (SO,T )÷ (1000÷ FCPU).

3.3. Instruction Throughput

The throughputTPO,T of an operation (instruction)
O, with operands of typesT , is the rate in cycles at
which the CPU can issue independent instructions of
that type. On modern processors the throughput of an
instruction is usually much smaller than its latency, be-
cause of pipelining and super-scalar execution.

To measureTPO,T, we could use a nano-benchmark
specification as follows.

SO,T,N,B =
<
{

p(i×B+0)%N = O(p(i×B+0)%N , pN );
p(i×B+1)%N = O(p(i×B+1)%N , pN );
. . .
p(i×B+B−1)%N = O(p(i×B+B−1)%N , pN );

},
〈p0, p1, . . . , pN : T 〉

>

Note that this specification generates code of the
form shown in Figure 3(d). It is further parameterized
by N andB, which control the number of independent
instructions to generate. For example, the sequence of
statements generated forN = 3 andB = 1 is the fol-
lowing.

case 0 : {p0 = O(p0, p3); }
case 1 : {p1 = O(p1, p3); }
case 2 : {p2 = O(p2, p3); }
case 3 : {p0 = O(p0, p3); }
. . .
case W : {p2 = O(p0, p3); }

In general, we generateB simple statement per case
label because otherwise we cannot measure ILP for sta-
tically scheduled VLIW cores. We then measure the
instruction throughput in clock cycles as follows.

N ← 2;

while

(

time

(

SO,T,N,1

)

time

(

SO,T,N−1,1

) > 1− ε

)

N ← N + 1;
B ← 2;
N ← N − 1;

while

(

time

(

SO,T,N×B,B

)

÷B

time

(

SO,T,N×(B−1),B−1

)

÷(B−1)
> 1− ε

)

B ← B + 1;

TPO,T ←
time

(

SO,T,N×(B−1),B−1

)

÷(B−1)

1000÷FCPU
;

The nano-benchmark code forSO,T,N,B exhibits
instruction- level parallelism (ILP) on the order ofN ×
B. The control engine times the nano-benchmark for
B = 1 and successively growing values of N while
performance continues to increase due to the additional
ILP. When the performance levels off for some N, the
control engine starts growingB to check if increasing
ILP between case labels improves performance.

3.4. Instruction Existence

The existence of certain instructions can influ-
ence the code produced by some self-optimizing sys-
tems; for example, ATLAS exploits the existence of
fused multiply-add (FMA). We determine whether a
fused multiply-add instruction exists by comparing the
throughput of a simple multiply with that of a fused
multiply-add. Similarly, many embedded processors do
not have dedicated floating-point hardware, but use an
emulation library instead. In X-Ray, we measure the
latency of a floating-point ADD, and assert that a hard-
ware floating-point unit exists if the latency is less than
10 cycles.

3.5. Number of Registers

To measure the number of registersNRT of typeT ,
we use a nano-benchmark with specificationST,N =
〈

pi%N = pi%N + p(i+N−1)%N , 〈p0, p1, . . . , pN : T 〉
〉

.
For example, the sequence of statements generated for
N = 4 is as follows.

case 0 : p0 = p0 + p3;
case 1 : p1 = p1 + p0;
case 2 : p2 = p2 + p1;
case 3 : p3 = p3 + p0;
case 4 : p0 = p0 + p3;
. . .
case W : p3 = p3 + p0;

If all of pi are allocated in registers, the time per op-
eration is much smaller than when some are allocated in
memory. The goal is to determine the maximumN , for
which no variables are allocated to memory. The con-
trol engine doublesN until it observes a drop in perfor-
mance. After that it performs a binary search in the in-
terval [N ÷ 2, N). The actual control engine algorithm
is as follows.



N ← 4;

while

(

time

(

ST,N

)

time

(

ST,2

) < 1 + ε

)

N ← N × 2;
R ← N ;
L← N

2
while (R − L > 1)

P ←
(R+L)

2 ;

if

(

time

(

ST,P

)

time

(

ST,2

) < 1 + ε

)

R ← P ;
else

L← P ;
NRT ← L;

3.6. SMP and SMT

To measure the number of processors in a SMP ar-
chitecture, X-Ray uses the throughput nano-benchmark
of Section 3.3 with specificationSADD,I32,N,B, where
N andB are the values for which maximum throughput
is achieved. The numberp of threads running concur-
rent instances of this configuration that exhibit no slow-
down compared to running a single thread characterizes
the number of physical processors in a SMP. Reading
the number of CPUs with an OS call returns the num-
berv of virtual SMT processors. The SMT per CPU of
the system is computed asv

p . To find which two virtual
processors share the same physical processor, X-Ray
executes instances of the configuration concurrently on
both. If there is no slowdown, the two virtual processors
do not share a physical processor.

4. Cache Micro-benchmarks

In this section we summarize our approach for mea-
suring memory hierarchy parameters. A full description
along with detailed proofs is given in [11]. The most
well-known benchmark for measuring memory hierar-
chy parameters is the Saavedra benchmark [7], but the
timing results are usually inspected manually to deter-
mine memory hierarchy parameters. Other approaches
use hardware counters [1, 2], but these are not very
portable. Our approach produces the hardware parame-
ter values directly; moreover, our results are accurate
even for arbitrary cache associativity, cache exclusion,
and hardware stride prefetching.

We focus on measuringassociativity, block size, ca-
pacity, and hit latency [4] of caches. The first three
parameters are sometimes referred to as the〈A, B, C〉
of caches, while the last parameter will be referred to
aslhit. The description of the algorithms given below
makes use of a parameterT = C

A that we call thestride
of the cache.

4.1. Sequences and compact sequences

X-Ray determines memory hierarchy parameters by
measuring the average timel to repeatedly access the
elements of different address sequences. When each ac-
cess is a cache hit,l = lhit is relatively small, and we
say that the sequence iscompact. When each access is a
cache miss,l = lmiss is relatively large, and we say that
the sequence isnon-compact. Sequences which are nei-
ther compact nor non-compact we callsemi-compact.

To measure the capacity and the associativity of the
L1 data cache, X-Ray uses sequences ofN addresses,
where successive addresses are separated by a stride
S = 2σ. Such sequences are completely characterized
by their starting addressm0, strideS and number of el-
ementsN . We use the notation〈m0, S, N〉 to represent
them.

Theorem 1 describes the necessary and sufficient
conditions for compactness and non-compactness of a
sequence of this type for a given cache. Informally, this
theorem says that as the strideS gets bigger, the max-
imum length of a compact sequence with strideS de-
creases until it bottoms out atA, while the minimum
length of a non-compact sequence with strideS de-
creases until it bottoms out atA + 1.

Theorem 1. Consider a cache with parameters
〈A, B, C〉 and a sequenceW = 〈m0, S, N〉.

(a) W is compact iffN ≤ Nc = A
⌈

T
S

⌉

(b) W is non-compact iffN ≥ Nnc = (A + 1)
⌈

T
S

⌉

Proof. Omitted.

4.2. Measuring L1 Cache Parameters

Cache Latency
We determine the cache hit latencylhit by measuring

the average time to repeatedly access the elements of
〈m0, 1, 1〉, which is obviously compact.
Capacity and Associativity

Theorem 1 suggests a method for determining the
capacityC and the associativityA. First, we findA

by determining the asymptotic limit of the length of a
compact sequence as the stride is increased. The small-
est value of the stride for which this limit is reached is
T , the stride of the cache; once we knowA andT , we
can findC.

Pseudo-code for measuringC andA of the L1 data
cache is shown below. We useis compact (W ) to em-
pirically determine ifW is compact by comparing the
average time to repeatedly access the elements ofW

with the cache hit latencylhit.



S ← 1;
N ← 1;
while (is compact (〈m0, S, N〉))

N ← 2 ×N;
repeat

S ← 2× S;
Nold ← N;

N ← min N ′ ∈ [1, Nold] : ¬is compact
(〈

m0, S, N ′

〉)

;

until (N = Nold);
A← N − 1;
C ← S

2 × A;

The algorithm can be described as follows. Start
with the sequence〈m0, S, N〉 = 〈m0, 1, 1〉, which is
compact, and keep doublingN until the sequence is
not compact. LetNold be the firstN for which this
happens. Now start doubling the strideS, and for each
S compute the smallestN for which 〈m0, S, N〉 is not
compact. This value ofN can be found by using bi-
nary search in the interval[1, Nold]. If N 6= Nold, let
Nold = N and recomputeN for the nextS. Repeat this
step untilN = Nold. At this point, declareA = N − 1
andC = S

2 ×A.

Block Size

For a cache with strideT and associativityA, the
sequence〈m0, T, 2A〉 is non-compact since all2A ad-
dresses map to the same cache set. This sequence can
also be expressed as〈m0, T, A〉 ∪ 〈m0 + C, T, A〉. If
we offset the second half of the sequence by a con-
stantδ as shown in Figure 4, we get a set of addresses
D = 〈m0, T, A〉 ∪ 〈m0 + C + δ, T, A〉.

T T ... T T ...T+B

1 2 3 A 1 2 3 A

m0

Figure 4. Sequence for measuring B

The addresses in each of the two subsequences map
to a single cache set. When0 ≤ δ < B this is the same
cache set andD is non-compact, and whenδ ≥ B the
cache sets are different andD is compact. Pseudo-code
for the algorithm is shown below.

δ ← 1
while (¬is compact (〈m0, T, A〉 ∪ 〈m0 + C + δ, T, A〉))

δ ← 2× δ;
return δ;

4.3. Measuring Parameters for Lower Levels

We can use the algorithms in Section 4.2 to measure
parameters of a lower level cachel, provided we en-
sure that the memory accesses miss in all higher level
cachesi < l. We accomplish this by using sequences
of sequences. For lack of space, we omit the details and
refer the interested reader to a companion paper [11].

4.4. Implementation of is compact

We represent our sequences of memory addresses
with arrays of pointers (void *) instead of arrays of
integers (int) as in the Saavedra benchmark. We ini-
tialize the array in such a way that each element con-
tains the address of the element which should be ac-
cessed immediately after it. A local variablep is initial-
ized with the address of the element which should be
accessed first.

For a correct implementation it is important to re-
peatedly access all elements of the sequence, but the
order in which we access them is irrelevant. To prevent
hardware constant stride prefetchers, from interfering
with our timings, we initialize the array elements by
chaining the pointers so that we visit the elements in
a pseudo-random order.

We perform the timings using a nano-benchmark
with specification 〈p = ∗(void ∗ ∗)p, 〈p : void∗〉〉 .
The fact that we can use the same nano-benchmark gen-
erator for measuring both CPU parameter values and
cache parameter values demonstrates the flexibility of
the X-Ray architecture.

5. Experimental Results

In this section, we present experimental results ob-
tained by using X-Ray to measure the hardware para-
meters of a number of desktop and embedded platforms.
Embedded processors are particularly challenging be-
cause there are many variations even within a single
processor family (in fact, some companies like Tensilica
make customizable embedded processors).

We compare our results to the actual values of the
hardware parameters, as well as to the values obtained
by lmbench v3.0-a4 [5]. We were unable to build or
run lmbench on some of the architectures. Tables 1
and 2 show a summary of the experimental results for
CPU features and the memory hierarchy respectively.
In these tables we use the following special keywords:

• !exist – a micro-benchmark for measuring this
hardware parameter does not exist in lmbench;

• !os – Lower level caches are physically addressed
on all modern machines so we found it necessary
to use super-pages to obtain consistent measure-
ments of lower level cache parameters. Support
for super-pages is very OS-specific, so we targeted
Linux as a proof of concept. We are currently
working on the implementation for Solaris, IRIX
and AIX. Similarly lmbench relies on various OS
features, which were not available on some of the
platforms.



Feature Tool U
ltr

aS
P

A
R

C
III

i

R
12

00
0

P
ow

er
3

P
en

tiu
m

4

Ita
ni

um
2

A
th

lo
n

M
P

O
pt

er
on

24
0

A
R

M
S

A
11

10

xS
ca

le
P

X
A

25
0

X
te

ns
a

LX

R
44

00

Actual 1,000.000 300.000 375.000 3,060.000 1,500.000 2,250.000 1,400.000 200.000 400.000 350.000 150.000
Frequency X-Ray 994.206 299.928 375.434 6,097.130 1,488.344 2,129.190 1,394.471 203.586 393.489 343.225 145.889
(MHz) lmbench 1,001.001 300.003 374.953 3,049.710 1,497.903 2,117.317 1,381.025 202.312 !os !os 152.001

Actual 1.000 1.000 1.000 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Latency ADD I32 X-Ray 1.000 1.000 1.000 1.001 1.000 1.000 1.000 1.001 1.006 1.000 1.000
(cycles) lmbench 0.991 1.102 1.009 0.488 1.004 1.005 0.994 0.997 !os !os 1.075

Actual ? 6.000 3.000 14-18.000 4.000 4.000 3.000 3.000 2.000 2.000 12.000
Latency MULTIPLY I32 X-Ray 6.000 5.989 3.000 29.987 3.985 4.000 3.013 3.095 1.977 1.977 14.873
(cycles) lmbench 27.868 6.057 3.007 13.907 5.168 4.003 2.983 3.704 !os !os 15.726

Actual 0.500 0.500 0.500 0.250 0.167 0.333 0.333 1.000 1.000 1.000 1.000
Throughput ADD I32 X-Ray 0.509 0.503 0.497 0.679 0.169 0.386 0.345 1.001 1.003 0.996 1.000
(cycles) lmbench 0.522 0.509 0.490 0.375 0.469 0.540 0.360 0.899 !os !os 0.814

Actual ? 6.000 3.000 5.000 0.500 2.000 1.000 2.000 1.000 1.000 12.000
Throughput MULTIPLY I32 X-Ray 4.963 5.989 2.972 9.337 0.506 2.016 1.024 1.986 0.998 0.996 14.870
(cycles) lmbench 27.868 5.938 3.007 3.512 0.485 2.012 1.022 3.562 !os !os 13.441

Actual 32 32 32 8 128 8 16 16 16 16 32
NR I32 X-Ray 22 22 28 5 123 5 14 12 13 11 17
(count) lmbench !exist !exist !exist !exist !exist !exist !exist !exist !exist !exist !exist

Actual FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
FMA I32 X-Ray TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE
(boolean) lmbench !exist !exist !exist !exist !exist !exist !exist !exist !exist !exist !exist

Actual TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
FPU F32 X-Ray TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
(boolean) lmbench !exist !exist !exist !exist !exist !exist !exist !exist !exist !exist !exist

Actual 4.000 2.000 4.000 5.000 4.000 4.000 4.000 n/a n/a 4.000 4.000
Latency ADD F32 X-Ray 3.963 2.000 4.000 10.013 3.984 4.000 4.052 n/a n/a 3.927 3.935
(cycles) lmbench 3.814 2.007 4.012 4.849 4.284 4.003 3.964 n/a n/a !os 4.179

Actual 4.000 2.000 4.000 7.000 4.000 4.000 4.000 n/a n/a 4.000 7.000
Latency MULTIPLY F32 X-Ray 4.037 2.000 5.034 14.079 3.984 4.000 4.052 n/a n/a 3.927 6.870
(cycles) lmbench 3.804 2.007 4.014 6.892 4.014 4.003 3.964 n/a n/a !os 7.323

Actual 1.000 1.000 0.500 1.000 0.500 1.000 1.000 n/a n/a 1.000 3.000
Throughput ADD F32 X-Ray 1.000 1.000 0.497 2.030 0.506 1.000 1.013 n/a n/a 0.996 2.913
(cycles) lmbench 2.667 1.004 0.501 2.108 0.549 1.522 1.231 n/a n/a !os 2.943

Actual 1.000 1.000 0.500 2.000 0.500 1.000 1.000 n/a n/a 1.000 3.000
Throughput MULTIPLY F32 X-Ray 1.009 1.000 0.500 4.004 0.506 1.000 1.013 n/a n/a 0.996 2.957
(cycles) lmbench 2.503 1.004 0.501 2.209 0.515 1.522 1.611 n/a n/a !os 3.130

Actual 32 32 32 8 128 8 16 n/a n/a 16 32
NR F32 X-Ray 32 32 32 8 128 8 16 n/a n/a 17 24
(count) lmbench !exist !exist !exist !exist !exist !exist !exist n/a n/a !exist !exist

Actual FALSE TRUE TRUE FALSE TRUE FALSE FALSE n/a n/a TRUE FALSE
FMA F32 X-Ray FALSE TRUE TRUE FALSE TRUE FALSE FALSE n/a n/a TRUE FALSE
(boolean) lmbench !exist !exist !exist !exist !exist !exist !exist n/a n/a !exist !exist

Actual TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
FPU F64 X-Ray TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
(boolean) lmbench !exist !exist !exist !exist !exist !exist !exist !exist !exist !exist !exist

Actual 4 2 4 5 4 4 4 n/a n/a n/a 4
Latency ADD F64 X-Ray 4 2 4 10.005 3.984 4 4.052 n/a n/a n/a 3.935
(cycles) lmbench 3.824 2.007 4.012 4.819 4.014 4.003 3.964 n/a n/a n/a 4.2

Actual 4 2 4 7 4 4 4 n/a n/a n/a 8
Latency MULTIPLY F64 X-Ray 4 2 4 14.023 3.986 4 4.052 n/a n/a n/a 7.826
(cycles) lmbench 3.804 2.007 4.012 6.892 4.014 4.003 3.964 n/a n/a n/a 8.397

Actual 1 1 0.5 1 0.5 1 1 n/a n/a n/a 3
Throughput ADD F64 X-Ray 1.009 1 0.5 2.032 0.506 1.008 1.013 n/a n/a n/a 2.935
(cycles) lmbench 2.712 1.004 0.501 2.095 0.515 1.845 2.022 n/a n/a n/a 2.838

Actual 1 1 0.5 2 0.5 1 1 n/a n/a n/a 4
Throughput MULTIPLY F64 X-Ray 1 1 0.5 3.998 0.506 1 1 n/a n/a n/a 3.957
(cycles) lmbench 2.86 1.004 0.501 2.209 0.515 2.687 2.022 n/a n/a n/a 3.748

Actual 32 32 32 8 128 8 16 n/a n/a n/a 24
NR F64 X-Ray 32 32 32 8 128 8 16 n/a n/a n/a 24
(cycles) lmbench !exist !exist !exist !exist !exist !exist !exist n/a n/a n/a !exist

Actual FALSE TRUE TRUE FALSE TRUE FALSE FALSE n/a n/a n/a FALSE
FMA F64 X-Ray FALSE TRUE TRUE FALSE TRUE FALSE FALSE n/a n/a n/a FALSE
(cycles) lmbench !exist !exist !exist !exist !exist !exist !exist n/a n/a n/a !exist

Table 1. Summary of Experimental Results for CPU Features



Feature Tool U
ltr

aS
P

A
R

C
III

i

R
12

00
0

P
ow

er
3

P
en

tiu
m

4

Ita
ni

um
2

A
th

lo
n

M
P

O
pt

er
on

24
0

A
R

M
S

A
11

10

xS
ca

le
P

X
A

25
0

X
te

ns
a

LX

R
44

00

Actual 64 32 64 8 16 64 64 8 32 16 16
L1 Cache Capacity X-Ray 64 32 64.5 8 16 64 64 8 32 16 16
(KB) lmbench 64 32 64 8 16 64 64 8 !os !os 16

Actual 4 2 128 4 4 2 2 32 32 2 1
L1 Cache AssociativityX-Ray 4 2 129 4 4 2 2 32 32 2 1
(count) lmbench !exist !exist !exist !exist !exist !exist !exist !exist !os !os !exist

Actual 32 16 128 64 64 64 64 32 32 64 16
L1 Cache Block Size X-Ray 32 16 128 64 64 64 64 32 32 64 16
(bytes) lmbench 32 32 128 64 64 64 64 32 !os !os 16

Actual 2.000 2.000 2.000 2.000 2.000 2.000 3.000 2.000 3.000 2.000 3.000
L1 Cache Latency X-Ray 2.093 2.011 1.986 4.109 2.009 1.992 3.090 1.993 3.053 1.969 2.956
(cycles) lmbench 2.000 2.010 2.023 2.226 2.005 3.170 3.110 2.002 !os !os 3.140

Actual 1024 2048 6144 512 256 512 1024 n/a n/a n/a n/a
L2 Cache Capacity X-Ray !os !os !os 512 256 576 1088 n/a n/a n/a n/a
(KB) lmbench 1024 2048 6144 512 256 512 1536 n/a n/a n/a n/a

Actual ? ? ? 8 8 16 16 n/a n/a n/a n/a
L2 Cache AssociativityX-Ray !os !os !os 8 8 18 17 n/a n/a n/a n/a
(count) lmbench !exist !exist !exist !exist !exist !exist !exist n/a n/a n/a n/a

Actual 64 128 128 128 128 64 64 n/a n/a n/a n/a
L2 Cache Block Size X-Ray !os !os !os 128 128 64 64 n/a n/a n/a n/a
(bytes) lmbench 64 128 128 128 128 64 64 n/a n/a n/a n/a

Actual ? ? ? ? 6.000 ? ? n/a n/a n/a n/a
L2 Cache Latency X-Ray !os !os !os 41.530 5.980 36.000 22.800 n/a n/a n/a n/a
(cycles) lmbench 4.410 13.860 17.190 20.360 6.104 19.907 9.819 n/a n/a n/a n/a

Actual ? ? ? ? ? ? ? ? ? ? ?
Main Memory Latency X-Ray !os 761.920 !os 36.747 297.650 471.350 136.210 41.259 134.986 10.793 13.820
(cycles) lmbench 172.810 122.060 18.317 17.963 301.878 432.911 140.947 41.805 !os !os 15.060

Table 2. Summary of Experimental Results for Memory Hierarc hy

• ? – we could not obtain official information about
the actual value of this hardware parameter.

X-Ray and lmbench measure some hardware para-
meters in different units. To allow direct comparison,
we normalized lmbench results as follows.

• lmbench measures the processor clock cycleclmb

and various latenciesllmb in nanoseconds. We
compute the processor frequency in MHz as
flmb = 1000 ÷ clmb, and latency in cycles as
llmb ÷ clmb.

• Instead of measuring instruction throughput, lm-
bench measures available instruction parallelism
plmb. We compute instruction throughput in cycles
astlmb = llmb÷ plmb, wherellmb is the latency in
cycles of the corresponding instruction, computed
as shown above.

We now discuss some of the more interesting results.

5.1. UltraSPARC IIIi and R12000

X-Ray measured all parameters accurately on both
architectures. Lmbench measured all parameters it sup-
ports accurately on the R12000, but gave less accurate

results on the UltraSPARC IIIi, especially for instruc-
tion latency and throughput.

5.2. Power 3

X-Ray detected an integer fused multiply-add in-
struction although there is not one in the ISA. We
verified that even though our measurement sequence
(r0=r0+r0*r0) is translated into separate dependent
MULTIPLY and ADD instructions, the hardware can
achieve the same throughput as if there was no ADD.
Therefore, the multiply-add sequence can be used to
generate high-performance code for this architecture.
X-Ray measured the data cache as 129-way set asso-
ciative instead of 128-way set associative. This resulted
in capacity of 64.5KB compared to the documented one
of 64KB. Lmbench gave accurate results on the para-
meters it is able to measure.

5.3. Pentium 4 Xeon

These processors feature two double-pumped integer
ALUs, which led X-Ray to believe that the frequency is
twice higher than the actual. This is not a problem as
long as all other timings are measured relative to this



frequency. Indeed, as Table 1 shows, all timing values
measured by X-Ray are twice larger than the actual val-
ues (except for Throughput ADD I32).

The throughput of ADD I32 is quite interesting. Be-
cause of the two integer ALUs and integer ADD latency
of 0.5 cycles, we expect an effective throughput of 0.25
cycles, which translates to 0.5 cycles relative to our fre-
quency. Instead X-Ray measured 0.679, which is 50%
greater (3 integer adds per cycle instead of 4). This
problem occurs because the instruction cache on Pen-
tium 4 can only deliver 3 instructions per cycle to the
instruction dispatch engine, preventing the integer pipes
from achieving the maximum throughput. Although we
do not present the results here, X-Ray was able to mea-
sure accurately the number of vector registers (MMX,
SSE, and SSE2), as well as the latencies and through-
puts of the corresponding SIMD instructions.

Lmbech results are close to those of X-Ray but no-
ticeably less accurate. However, lmbench found the ad-
vertised frequency instead of double the value as X-Ray
did.

5.4. Itanium 2

X-Ray produced accurate results for all parameters.
Lmbench results were slightly less accurate, with one
major problem – the throughput of ADD I32. This
processor is able to execute 6 independent ADD oper-
ations per cycle, and lmbench measured throughput of
only 0.469. X-Ray measured the correct throughput of
0.169.

Measuring the number of F32 registers illustrates a
different point. This processor has128 floating-point
registers but two of them are hardwired to0.0 and1.0.
In spite of this, X-Ray concluded that the Itanium has
128 available registers, because the average access time
did not increase significantly until three or more vari-
ables were spilled. Reducing the significance threshold
used by X-Ray may permit a more accurate measure-
ment but this increases sensitivity to noise.

5.5. Athlon MP and Opteron 240

X-Ray measured all CPU feature parameters accu-
rately. Lmbench gave less accurate results, especially
for instruction throughput.

The memory hierarchy numbers for these machine
are interesting because they expose the fact that the L1
and L2 caches implement cacheexclusion. Most plat-
forms support cacheinclusion, which means that infor-
mation cached at a particular level of the memory hier-
archy is also cached in all lower levels. AMD machines
on the other hand use exclusion, so data never resides

in both the L1 and L2 caches simultaneously. X-Ray
classified the 512KB, 16-way associative L2 cache of
the AthlonMP as an 18-way set-associative cache with
a capacity of 576KB (exactlyC1 + C2). Similarly on
the Opteron 240, the 1MB L2 was classified as a 17-way
set associative cache with an effective capacity 1088KB
(exactlyC1+C2). If the actual capacity of theL2 cache
is needed, it can be obtained by subtracting the capac-
ity of the L1 cache, although the combined capacity is
what is actually relevant for an self-optimizing code that
wants to perform an optimization like cache tiling.

5.6. Xtensa LX

Xtensa LX is a configurable, extensible processor
core designed by Tensilica. The hardware parameters
of different Xtensa LX cores can be very different. This
feature of the Xtensa LX processor makes it a challeng-
ing target for X-Ray.
Frequency

The processor frequency measured by X-Ray
(343.225MHz) was 2% different from the actual value
(350MHz). This inaccuracy can be explained by the
loop overhead incurred from the code shown in Fig-
ure 3(d). The 256 case statements have a latency of 1
cycle for a total of 256 cycles, and the loop-back code
at the end has a total latency of 5 cycles. Therefore the
measurement error is5÷261 ≈ 2%. While we can par-
tially compensate for this [8], we do not feel that this
is necessary because we only use frequency to measure
other parameters relative to it (in clock cycles).
Number of Registers

X-Ray measured 11 integer registers and 17 floating-
point registers, while there are 16 architecturally avail-
able of both types. We verified that register spills oc-
curred when using more than 11 integer variables or
more than 16 floating-point variables. The cost of
spilling one floating-point registers was not sufficient
for X-Ray to declare that a phase transition had hap-
pened. Of course, we could lower the threshold at which
X-Ray declares that a phase transition has happened,
but this might have a negative impact on other platforms
where measurement noise is relatively high. In practice,
it is likely that this performance penalty will not be sta-
tistically significant even if the number of variables is
one or two more than the number of available registers.
We are also looking into more robust phase transition
detection algorithms.
Other Configurations

• We introduced two more integer ADD and one
more integer MULTIPLY functional units. X-
Ray correctly measured the new Throughput ADD



I32 and Throughput MULTIPLY I32 as 0.335 and
0.496 cycles respectively.

• We changed the data cache configuration to 6KB,
3-way set associative with 32 byte blocks. X-Ray
correctly measured the new cache parameters.

• We replaced the data cache with a 128-bit single
precision fixed point SIMD unit. After the appro-
priate descriptions were added, X-Ray correctly
measured the latency and throughput of ADD and
MULTIPLY, along with the number of vector reg-
isters (1.000, 1.977, 0.998, 0.996, and 16 respec-
tively).

5.7. MIPS R4400

X-Ray measured all parameters accurately. Lm-
bench accurately measured all parameters it supports.
There are two details worth noting.

• The latency of MULTIPLY I32 measured by X-
Ray is about 15 cycles, while the actual latency is
12 cycles. The reason behind this mismatch is that
the R4400 has special registershi andlo, which
hold the result of integer multiply. Therefore the
code sequence we use (r0=r0*r1) is translated
to the assembly sequence〈hi, lo〉 = r0 * r1;
r0 = lo; noop; noop. The twonoop in-
structions are necessary because access tolo is
asynchronous and the compiler needs to make sure
that the value can be copied before it is destroyed.
Therefore, although the latency of an integer mul-
tiply is 12 cycles, it cannot be sustained by code.

• X-Ray measured significantly fewer registers than
are architecturally available. We examined the
generated assembly files and confirmed that it is
the policy of the native compiler to reserve the rest
of the registers.

6. Future Work

We are actively developing new micro-benchmarks
inside the X-Ray framework. Our current focus in-
cludes measuring other parameters of the memory hier-
archy such as parameters of instruction caches, and re-
placement policy and bandwidth of different cache lev-
els, as well as determining all bundles of instructions
that can be issued in a single CPU cycle at a sustained
rate.

X-Ray can be downloaded athttp://iss.cs.
cornell.edu/Software/X-Ray.aspx.

Acknowledgements

We thank Darin Petkov for performing the Xtensa
measurements, and Carl Staelin for his assistance with
lmbench, as well as for numerous constructive sugges-
tions at improving X-Ray and this paper.

References

[1] C. Coleman and J. Davidson. Automatic memory hier-
archy characterization.IEEE International Symposium
on Performance Analysis of Systems and Software (IS-
PASS), pages 103–110, 2001.

[2] J. Dongarra, S. Moore, P. Mucci, K. Seymour, and
H. You. Accurate cache and TLB characterization us-
ing hardware counters. InProceedings of the Inter-
national Conference on Computational Science (ICCS)
2004, Krakow, Poland, 2004.

[3] M. Frigo and S. G. Johnson. The design and imple-
mentation of FFTW3.Proceedings of the IEEE, 93(2),
2005. special issue on ”Program Generation, Optimiza-
tion, and Adaptation”.

[4] J. L. Hennessy and D. A. Patterson.Computer Archi-
tecture: A Quantitative Approach. Morgan Kaufmann
Publishers, 1990.

[5] L. McVoy and C. Staelin. lmbench: Portable tools for
performance analysis. InUSENIX 1996 Annual Techni-
cal Conference, January 22–26, 1996. San Diego, CA,
pages 279–294, Berkeley, CA, USA, Jan. 1996.

[6] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua,
M. Veloso, B. W. Singer, J. Xiong, F. Franchetti,
A. Gačić, Y. Voronenko, K. Chen, R. W. Johnson, and
N. Rizzolo. SPIRAL: Code generation for DSP trans-
forms.Proceedings of the IEEE, 93(2), 2005. special is-
sue on ”Program Generation, Optimization, and Adap-
tation”.

[7] R. H. Saavedra and A. J. Smith. Measuring cache and
TLB performance and their effect of benchmark run.
Technical Report CSD-93-767, Feb. 1993.

[8] C. Staelin and L. McVoy. mhz: Anatomy of a micro-
benchmark. InUSENIX 1998 Annual Technical Confer-
ence, January 15–18, 1998. New Orleans, Louisiana,
pages 155–166, Berkeley, CA, USA, June 1998.

[9] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated
empirical optimization of software and the ATLAS
project.Parallel Computing, 27(1–2):3–35, 2001. Also
available as University of Tennessee LAPACK Work-
ing Note #147, UT-CS-00-448, 2000 (www.netlib.
org/lapack/lawns/lawn147.ps).

[10] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pin-
gali, and P. Stodghill. Is search really necessary to
generate high-performance BLAS?Proceedings of the
IEEE, 93(2), 2005. special issue on ”Program Genera-
tion, Optimization, and Adaptation”.

[11] K. Yotov, K. Pingali, and P. Stodghill. Automatic mea-
surement of memory hierarchy parameters. InSIGMET-
RICS’05, June 2005.


