
LS: Valgrind, Memory Leaks,

 Code representation

2

D&R

Disassemble-

and-

resynthesize

(Valgrind)

instrument

IR

asmout

asmin disassemble

resynthesize

Memory Layout

 When a program is executed, it is

given a fixed portion of memory

to be used for its stack and heap.

 If the program is unable to

allocate memory, it will throw an

out of memory exception and

this is likely to crash the program

Memory Leaks Revisited

 Stack memory is “freed” when a function returns and the

current stack frame is popped off the stack.

 Therefore, memory leaks can only occur with memory on

the heap.

 Dynamically allocated memory will not be freed until the

delete command is called on it.

Impacts of Memory Leaks

 Many programs that leak memory, will do so very slowly.

 A program that leaks memory may run for days, weeks, or

even longer before it causes a program to crash.

 This is a serious real world problem with software today!

Impacts of Memory Leaks (2)‏

 Programs in this class will probably never be large enough

nor run long enough for memory leaks to have any

noticeable effect.

 However, it is obviously bad programming practice and you

will lose points on your MPs if they are leaking memory.

 A useful tool—valgrind—can be used to check a program

for a variety of common errors including memory leaks

Valgrind Toolkit

7

 Memcheck is memory debugger
 detects memory-management problems

 Cachegrind is a cache profiler
 performs detailed simulation of the I1, D1 and L2 caches in your

CPU

 Massif is a heap profiler
 performs detailed heap profiling by taking regular snapshots of a

program's heap

 Helgrind is a thread debugger
 finds data races in multithreaded

 programs

Memcheck Features

8

 When a program is run under Memcheck's supervision, all reads and writes
of memory are checked, and calls to malloc/new/free/delete are intercepted

 Memcheck can detect:
 Use of uninitialised memory

 Reading/writing memory after it has been free'd

 Reading/writing off the end of malloc'd blocks

 Reading/writing inappropriate areas on the stack

 Memory leaks -- where pointers to malloc'd blocks are lost forever

 Passing of uninitialised and/or unaddressible memory to system calls

 Mismatched use of malloc/new/new [] vs free/delete/delete []

 Overlapping src and dst pointers in memcpy() and related functions

 Some misuses of the POSIX pthreads API

Memcheck Example

9

Using non-

initialized

value

Using “free” of

memory allocated

by “new”

Access of

unallocated

memory

Memory

leak

Memcheck Example (Cont.)

10

 Compile the program with –g flag:
 g++ -c a.cc –g –o a.out

 Execute valgrind :
 valgrind --tool=memcheck --leak-check=yes a.out > log

 View log

Debug

leaks

Executable

name

Memcheck report

11

Memcheck report (cont.) Leaks detected:

Profiling Tools 12

S

T

A

C

K

Before Using Valgrind

 Be sure that your executable was created from files that

were complied with the -g and -O0 compiler flags

 IMPORTANT NOTE: valgrind will only detect memory

leaks that are exposed by the code that executes.

 Therefore, be sure you are running test cases that could

potentially expose a leak, and be sure to test all branches of each

conditional.

Memory Leaks in Valgrind

 Divides memory leaks into three categories:

 “definitely lost” memory blocks

 The pointer to the dynamically allocated memory is lost and there is no

way to recover it

 “possibly lost” memory blocks

 The only pointer to the dynamically allocated memory is pointing to the

interior of a block and may be unrelated

 “still reachable” memory blocks

 The pointer to the dynamically allocated memory still exists, but the

memory was never freed at the end of the programs execution.

Running Valgrind

 Useful Flags:

 --leak-check=<no | summary | yes | full>

 defaults to summary

 yes or full will provide details for individual leaks which includes

a stack trace to its location

 --show-reachable=<no | yes>

 defaults to no

 if enabled, valgrind will also provide information about any “still

reachable” memory leaks, which are usually not considered to be

serious.

A Note on Buffer Overflows

 Unrestricted access to an

array stored on the stack

can be exploited by a clever

user

 If the return address is

overwritten, malicious code

might be executed

Safety Features in Java

 Java does not have this issue because:

 It prohibits DMA (direct memory access)‏

 All arrays are bounds-checked during run-time

 Any attempt to read out of the bounds of an array

will throw an ArrayIndexOutOfBounds exception.

 All of these safety features come at a

performance cost.

Buffer Overflow Protection in C++

 Use the STL containers

 They perform bounds checking for you.

 Use the std::String class rather than a C-style char* buffer

when receiving input from the user

