
LS: Valgrind, Memory Leaks,

 Code representation

2

D&R

Disassemble-

and-

resynthesize

(Valgrind)

instrument

IR

asmout

asmin disassemble

resynthesize

Memory Layout

 When a program is executed, it is

given a fixed portion of memory

to be used for its stack and heap.

 If the program is unable to

allocate memory, it will throw an

out of memory exception and

this is likely to crash the program

Memory Leaks Revisited

 Stack memory is “freed” when a function returns and the

current stack frame is popped off the stack.

 Therefore, memory leaks can only occur with memory on

the heap.

 Dynamically allocated memory will not be freed until the

delete command is called on it.

Impacts of Memory Leaks

 Many programs that leak memory, will do so very slowly.

 A program that leaks memory may run for days, weeks, or

even longer before it causes a program to crash.

 This is a serious real world problem with software today!

Impacts of Memory Leaks (2)

 Programs in this class will probably never be large enough

nor run long enough for memory leaks to have any

noticeable effect.

 However, it is obviously bad programming practice and you

will lose points on your MPs if they are leaking memory.

 A useful tool—valgrind—can be used to check a program

for a variety of common errors including memory leaks

Valgrind Toolkit

7

 Memcheck is memory debugger
 detects memory-management problems

 Cachegrind is a cache profiler
 performs detailed simulation of the I1, D1 and L2 caches in your

CPU

 Massif is a heap profiler
 performs detailed heap profiling by taking regular snapshots of a

program's heap

 Helgrind is a thread debugger
 finds data races in multithreaded

 programs

Memcheck Features

8

 When a program is run under Memcheck's supervision, all reads and writes
of memory are checked, and calls to malloc/new/free/delete are intercepted

 Memcheck can detect:
 Use of uninitialised memory

 Reading/writing memory after it has been free'd

 Reading/writing off the end of malloc'd blocks

 Reading/writing inappropriate areas on the stack

 Memory leaks -- where pointers to malloc'd blocks are lost forever

 Passing of uninitialised and/or unaddressible memory to system calls

 Mismatched use of malloc/new/new [] vs free/delete/delete []

 Overlapping src and dst pointers in memcpy() and related functions

 Some misuses of the POSIX pthreads API

Memcheck Example

9

Using non-

initialized

value

Using “free” of

memory allocated

by “new”

Access of

unallocated

memory

Memory

leak

Memcheck Example (Cont.)

10

 Compile the program with –g flag:
 g++ -c a.cc –g –o a.out

 Execute valgrind :
 valgrind --tool=memcheck --leak-check=yes a.out > log

 View log

Debug

leaks

Executable

name

Memcheck report

11

Memcheck report (cont.) Leaks detected:

Profiling Tools 12

S

T

A

C

K

Before Using Valgrind

 Be sure that your executable was created from files that

were complied with the -g and -O0 compiler flags

 IMPORTANT NOTE: valgrind will only detect memory

leaks that are exposed by the code that executes.

 Therefore, be sure you are running test cases that could

potentially expose a leak, and be sure to test all branches of each

conditional.

Memory Leaks in Valgrind

 Divides memory leaks into three categories:

 “definitely lost” memory blocks

 The pointer to the dynamically allocated memory is lost and there is no

way to recover it

 “possibly lost” memory blocks

 The only pointer to the dynamically allocated memory is pointing to the

interior of a block and may be unrelated

 “still reachable” memory blocks

 The pointer to the dynamically allocated memory still exists, but the

memory was never freed at the end of the programs execution.

Running Valgrind

 Useful Flags:

 --leak-check=<no | summary | yes | full>

 defaults to summary

 yes or full will provide details for individual leaks which includes

a stack trace to its location

 --show-reachable=<no | yes>

 defaults to no

 if enabled, valgrind will also provide information about any “still

reachable” memory leaks, which are usually not considered to be

serious.

A Note on Buffer Overflows

 Unrestricted access to an

array stored on the stack

can be exploited by a clever

user

 If the return address is

overwritten, malicious code

might be executed

Safety Features in Java

 Java does not have this issue because:

 It prohibits DMA (direct memory access)

 All arrays are bounds-checked during run-time

 Any attempt to read out of the bounds of an array

will throw an ArrayIndexOutOfBounds exception.

 All of these safety features come at a

performance cost.

Buffer Overflow Protection in C++

 Use the STL containers

 They perform bounds checking for you.

 Use the std::String class rather than a C-style char* buffer

when receiving input from the user

