LS: Valgrind, Memory Leaks,

MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME
A FEW POINTERS?

0x3A28213A
Ox6339392C,
Ox 7363682E.

| HATE YOU.

Y




Code representation

Instrument

D&R disassemble

Disassemble-
and-
resynthesize
(Valgrind)

resynthesize




Memory Layout

» When a program is executed, it is

oD given a fixed portion of memory
to be used for its stack and heap.
i i i » If the program is unable to
allocate memory, it will throw an
FroeMemory out of memory exception and
stack or heap) this is likely to crash the program

Stack
(grovns Lpands)




Memory Leaks Revisited

» Stack memory is “freed” when a function returns and the
current stack frame is popped off the stack.

» Therefore, memory leaks can only occur with memory on
the heap.

» Dynamically allocated memory will not be freed until the
delete command is called on it.



Impacts of Memory Leaks

» Many programs that leak memory, will do so very slowly.

» A program that leaks memory may run for days, weeks, or
even longer before it causes a program to crash.

» This is a serious real world problem with software today!



Impacts of Memory Leaks (2)

» Programs in this class will probably never be large enough
nor run long enough for memory leaks to have any
noticeable effect.

» However, it is obviously bad programming practice and you
will lose points on your MPs if they are leaking memory.

» A useful tool—valgrind—can be used to check a program
for a variety of common errors including memory leaks



Valgrind Toolkit

» Memcheck is memory debugger
detects memory-management problems
» Cachegrind is a cache profiler

performs detailed simulation of the ||, DI and L2 caches in your
CPU

» Massif is a heap profiler

performs detailed heap profiling by taking regular snapshots of a
program's heap

» Helgrind is a thread debugger

finds data races in multithreaded
programs



Memcheck Features

» When a program is run under Memcheck's supervision, all reads and writes
of memory are checked, and calls to malloc/new/free/delete are intercepted

» Memcheck can detect:
Use of uninitialised memory
Reading/writing memory after it has been free'd
Reading/writing off the end of malloc'd blocks
Reading/writing inappropriate areas on the stack
Memory leaks -- where pointers to malloc'd blocks are lost forever
Passing of uninitialised and/or unaddressible memory to system calls
Mismatched use of malloc/new/new [] vs free/delete/delete []
Overlapping src and dst pointers in memcpy() and related functions
Some misuses of the POSIX pthreads API



Memcheck |

Access of
unallocated
memory

Using non-
initialized
value

nclude <i1ostream:=

har * () { char *cp=new char[1¢]; return cp; }

f#detTine MM 100000
int main({) {

int *p= new int[10];
p[10] = 6;

int i,j;
j= 1+3;
it (i=0) std::cout<<"Hi";

()5
free (p);
return 0O;

Using “free” of
memory allocated
b ‘Gnew99



Memcheck Example (Cont.)

» Compile the program with —g flag:

» Execute valgrind : SR
S leaks

» View log o

Executable
name

10



Memcheck report

Invalid write of size 4
at Dx80486CA: main {(a.cc:8)

Address 0x1B92A050 is 0 bytes after a block of size 40 alloc'd
at Ox1B904E35: operator new|[]{unsigned) {vg_replace malloc.c:139)
by Ox80486BD: main (a.cc:7)

Conditional jump or move depends on uninitialised value(s)
at 0x80486DD: main {a.cc:12)

Mismatched Traeim/ delete / delete []
at 0x1BO04FAT: Free (vg_replace_malloc.c:153)
by 0x8048703: mair (a.cc:195)
Address 0x1B92A028 is 7 bytes inside a block of size 40 alloc'd
at Ox1BO904E35: operator new|]{unsigned) (vg_replace malloc.c:139)
by 0x80486BD: main (a.cc:7)

11



Memcheck report (cont.) Leaks detected:

ERROR SUMMARY: 2 orpore foom 2 contoxte fcunpboccod: 15 from 1)
malloc/free: in use at exit: 17 bytes in 1 blocks.

malloc/free: 2 allocs, 1 frees, 57 bytes allocated.

For counts of detected errors, rerun with: -v

searching for pointers to 1 not-freed blocks.

checked 2250336 bytes.

17 bytes in 1 blocks are definitely lost in loss record 1 of {1
at Ox1B904E35: operator new|[]{unsigned) {vg_replace _malloc.c:139)
by 0Ox8048697: T() (a.cc:3)
by Ox80486F8: main (a.cc:14)

LEAK SUMMARY :
definitely lost: 17 bytes in 1 blocks.

12 Profiling Tools



Before Using Valgrind

» Be sure that your executable was created from files that
were complied with the -g and -O0 compiler flags

» IMPORTANT NOTE: valgrind will only detect memory
leaks that are exposed by the code that executes.

Therefore, be sure you are running test cases that could
potentially expose a leak, and be sure to test all branches of each
conditional.



Memory Leaks in Valgrind

» Divides memory leaks into three categories:

“definitely lost” memory blocks

The pointer to the dynamically allocated memory is lost and there is no
way to recover it

“possibly lost” memory blocks

The only pointer to the dynamically allocated memory is pointing to the
interior of a block and may be unrelated

“still reachable” memory blocks

The pointer to the dynamically allocated memory still exists, but the
memory was never freed at the end of the programs execution.



Running Valgrind
» Useful Flags:

» --leak-check=<no | summary | yes | full>
defaults to summary

yes or full will provide details for individual leaks which includes
a stack trace to its location

» --show-reachable=<no | yes>
defaults to no

if enabled, valgrind will also provide information about any “still
reachable” memory leaks, which are usually not considered to be
serious.



A Note on Bufter Overflows

top of stack

Stack Pointer

Frame Paointar

L 2

Locals of
DrawLine

Return Address

stack frame
for

DrawsSquare |

subroutine

Parameters for
DrawLine

Locals of
DrawsSquare

Return Address

Parameters for
Drawsquare

stack frame
for
CrawlLine
subroutine

» Unrestricted access to an
array stored on the stack
can be exploited by a clever
user

» If the return address is
overwritten, malicious code
might be executed



Satety Features in Java

» Java does not have this issue because:
It prohibits DMA (direct memory access)
All arrays are bounds-checked during run-time
Any attempt to read out of the bounds of an array
will throw an ArraylndexOutOfBounds exception.

» All of these safety features come at a

performance cost.



Butfer Overtlow Protection in C++

» Use the STL containers

They perform bounds checking for you.

» Use the std::String class rather than a C-style char* buffer
when receiving input from the user



