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Organization 

 Temporal and spatial locality 

 Operational intensity, memory/compute bound 
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Problem: Processor-Memory Bottleneck 

Main 
Memory 

CPU Reg 

Processor performance 
doubled about  
every 18 months Bus bandwidth 

evolved much slower 

Core 2 Duo: 
Peak performance:  
2 SSE two operand ops/cycles 
consumes up to 64 Bytes/cycle 

Core 2 Duo: 
Bandwidth 
2 Bytes/cycle 

Solution: Caches/Memory hierarchy 
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Typical Memory Hierarchy 

registers 

on-chip L1 
cache (SRAM) 

main memory 
(DRAM) 

local secondary storage 
(local disks) 

Larger,   
slower,  
cheaper  
per byte 

remote secondary storage 
(tapes, distributed file systems, Web servers) 

Local disks hold files 
retrieved from disks on 
remote network servers 

Main memory holds disk blocks 
retrieved from local disks 

on-chip L2 
cache (SRAM) 

L1 cache holds cache lines retrieved from 
L2 cache 

CPU registers hold words retrieved from 
 L1 cache 

L2 cache holds cache lines retrieved 
from main memory 

L0: 

L1: 

L2: 

L3: 

L4: 

L5: 

Smaller, 
faster, 
costlier 
per byte 
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1 Core 

Abstracted Microarchitecture: Example Core 
Throughput (tp) is measured in doubles/cycle. For example: 2 (4) 
Latency (lat) is measured in cycles 
1 double floating point (FP) = 8 bytes 
Rectangles not to scale 

Hard disk 
≥ 0.5 TB 

fadd 

fmul 

ALU 

load 

store 

Main 
Memory 
(RAM) 
4 GB 

L2 cache 
4 MB 

16-way 
64B CB 

L1 Icache 
 

both: 
32 KB 
8-way 
64B CB 

L1 Dcache 

16 FP 
register 

internal 
registers 

instruction 
decoder 

(up to 5 ops/cycle) instruction pool 
(up to 96 (168) “in flight”) 

execution 
units 

double FP: 
scalar tp: 
• 1 add/cycle 
• 1 mult/cycle 

vector (SSE) tp 
• 1 vadd/cycle = 2 adds/cycle 
• 1 vmult/cycle = 2 mults/cycle 

CISC ops 
RISC  
μops 

issue 
6 μops/ 

cycle 

lat: 3 (4) 
tp: 2 (4) 

lat: 14 (12) 
tp: 1 (4) 

lat: 100 (10) 
tp: 1/4 (1) 

lat: millions 
tp: ~1/250  
     (~1/100) 

ISA 

Core #1 

Core #2 

Core 2 Duo: 
on die 

RAM 

Memory hierarchy: 
• Registers 
• L1 cache 
• L2 cache 
• Main memory 
• Hard disk 

Core i7 Sandy Bridge: 
Core #1 

Core #2 

Core #3 

Core #4 

L2 

L2 

L2 

L2 

L2 

L3 

on die 

RAM 

Core 2 
(2008) 

Core i7 
Sandy Bridge (2011) 

256 KB L2 cache 
2–8MB L3 cache: lat 26-31, tp 4 
vector (AVX) tp 
• 1 vadd/cycle  

= 4 adds/cycle 
• 1 vmult/cycle  

= 4 mults/cycle 

out of order execution 
superscalar 

Source: Intel 

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
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Why Caches Work: Locality 

 Locality: Programs tend to use data and instructions with addresses 
near or equal to those they have used recently 
History of locality 

 

 Temporal locality:   

Recently referenced items are likely  
to be referenced again in the near future 

 

 Spatial locality:   

Items with nearby addresses tend  
to be referenced close together in time 

 

 

memory 

memory 

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1
http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1
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Example: Locality? 

 Data: 

 Temporal: sum referenced in each iteration 

 Spatial: array a[] accessed in stride-1 pattern 

 Instructions: 

 Temporal: loops cycle through the same instructions 

 Spatial: instructions referenced in sequence 

 

 Being able to assess the locality of code is a crucial skill for a 
performance programmer 

 

sum = 0; 
for (i = 0; i < n; i++) 
   sum += a[i]; 
return sum; 
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Locality Example #1 

int sum_array_rows(int a[M][N]) 
{ 
  int i, j, sum = 0; 
 
  for (i = 0; i < M; i++) 
    for (j = 0; j < N; j++) 
      sum += a[i][j]; 
  return sum; 
} 
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Locality Example #2 

int sum_array_cols(int a[M][N]) 
{ 
  int i, j, sum = 0; 
 
  for (j = 0; j < N; j++) 
    for (i = 0; i < M; i++) 
      sum += a[i][j]; 
  return sum; 
} 



© Markus Püschel 
Computer Science 

Locality Example #3 

int sum_array_3d(int a[M][N][N]) 
{ 
  int i, j, k, sum = 0; 
 
  for (i = 0; i < M; i++) 
    for (j = 0; j < N; j++) 
      for (k = 0; k < N; k++) 
        sum += a[k][i][j]; 
  return sum; 
} 

How to improve locality? 
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Memory/Compute Bound 

 Operational intensity of a program/algorithm: 

 

 

 Notes: 

 I depends on the computer (e.g., the cache size and structure) 

 Q: Relation to cache misses?  

A: Denominator determined by misses in lowest level cache 

 This course usually: 

 #ops = #flops 

 unit: flops/byte or flops/double 

 “Definition:” Programs with high I are called compute bound, 
programs with low I are called memory bound 

Number of operations 

Amount of data transferred cache ↔ RAM 
I =  
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Questions 

 Q: How high is high enough for compute bound? 

A: Depends on the computer; we will make this precise later with the 
roofline model 

 Q: Estimate the operational intensity 

int sum_array_rows(int a[M][N]) 
{ 
  int i, j, sum = 0; 
 
  for (i = 0; i < M; i++) 
    for (j = 0; j < N; j++) 
      sum += a[i][j]; 
  return sum; 
} 
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Upper Bound on I 

 Assume cold (empty) cache: 

 

 

 Hence: 

 

 

 Examples: Compute upper bounds of I for  

 Matrix multiplication C = AB + C 

 

 Discrete Fourier transform 

 

 Adding two vectors x = x+y 

Amount of data transferred cache ↔ RAM 

≥ Size of input data + size of output data 

Number of operations 

Size of input data + size of output data 
I ≤  

I(n) · 2n3

3n2
= 2

3
n = O(n)

I(n) ·
5n log2(n)

2n
= 5

2
log2(n) = O(log(n))

I(n) · n
2n

= 1
2
= O(1)



© Markus Püschel 
Computer Science 

Effects 
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matrix size 

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double) 
Gflop/s 
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Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single) 
Gflop/s 

MMM: I(n) ≤ O(n) FFT: I(n) ≤ O(log(n)) 

Up to 80-90% peak 
Performance can be maintained 
Cache miss time compensated/hidden  
by computation 

Up to 40-50% peak 
Performance drop outside L2 cache 
Most time spent transferring data 


