
© Markus Püschel
Computer Science

Organization

 Temporal and spatial locality

 Operational intensity, memory/compute bound

© Markus Püschel
Computer Science

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus bandwidth

evolved much slower

Core 2 Duo:
Peak performance:
2 SSE two operand ops/cycles
consumes up to 64 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle

Solution: Caches/Memory hierarchy

© Markus Püschel
Computer Science

Typical Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

on-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from
 L1 cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

© Markus Püschel
Computer Science

1 Core

Abstracted Microarchitecture: Example Core
Throughput (tp) is measured in doubles/cycle. For example: 2 (4)
Latency (lat) is measured in cycles
1 double floating point (FP) = 8 bytes
Rectangles not to scale

Hard disk
≥ 0.5 TB

fadd

fmul

ALU

load

store

Main
Memory
(RAM)
4 GB

L2 cache
4 MB

16-way
64B CB

L1 Icache

both:
32 KB
8-way
64B CB

L1 Dcache

16 FP
register

internal
registers

instruction
decoder

(up to 5 ops/cycle) instruction pool
(up to 96 (168) “in flight”)

execution
units

double FP:
scalar tp:
• 1 add/cycle
• 1 mult/cycle

vector (SSE) tp
• 1 vadd/cycle = 2 adds/cycle
• 1 vmult/cycle = 2 mults/cycle

CISC ops
RISC
μops

issue
6 μops/

cycle

lat: 3 (4)
tp: 2 (4)

lat: 14 (12)
tp: 1 (4)

lat: 100 (10)
tp: 1/4 (1)

lat: millions
tp: ~1/250
 (~1/100)

ISA

Core #1

Core #2

Core 2 Duo:
on die

RAM

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• Main memory
• Hard disk

Core i7 Sandy Bridge:
Core #1

Core #2

Core #3

Core #4

L2

L2

L2

L2

L2

L3

on die

RAM

Core 2
(2008)

Core i7
Sandy Bridge (2011)

256 KB L2 cache
2–8MB L3 cache: lat 26-31, tp 4
vector (AVX) tp
• 1 vadd/cycle

= 4 adds/cycle
• 1 vmult/cycle

= 4 mults/cycle

out of order execution
superscalar

Source: Intel

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

Why Caches Work: Locality

 Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently
History of locality

 Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

 Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

memory

memory

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1
http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

© Markus Püschel
Computer Science

Example: Locality?

 Data:

 Temporal: sum referenced in each iteration

 Spatial: array a[] accessed in stride-1 pattern

 Instructions:

 Temporal: loops cycle through the same instructions

 Spatial: instructions referenced in sequence

 Being able to assess the locality of code is a crucial skill for a
performance programmer

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

© Markus Püschel
Computer Science

Locality Example #1

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

© Markus Püschel
Computer Science

Locality Example #2

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

© Markus Püschel
Computer Science

Locality Example #3

int sum_array_3d(int a[M][N][N])
{
 int i, j, k, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
 sum += a[k][i][j];
 return sum;
}

How to improve locality?

© Markus Püschel
Computer Science

Memory/Compute Bound

 Operational intensity of a program/algorithm:

 Notes:

 I depends on the computer (e.g., the cache size and structure)

 Q: Relation to cache misses?

A: Denominator determined by misses in lowest level cache

 This course usually:

 #ops = #flops

 unit: flops/byte or flops/double

 “Definition:” Programs with high I are called compute bound,
programs with low I are called memory bound

Number of operations

Amount of data transferred cache ↔ RAM
I =

© Markus Püschel
Computer Science

Questions

 Q: How high is high enough for compute bound?

A: Depends on the computer; we will make this precise later with the
roofline model

 Q: Estimate the operational intensity

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

© Markus Püschel
Computer Science

Upper Bound on I

 Assume cold (empty) cache:

 Hence:

 Examples: Compute upper bounds of I for

 Matrix multiplication C = AB + C

 Discrete Fourier transform

 Adding two vectors x = x+y

Amount of data transferred cache ↔ RAM

≥ Size of input data + size of output data

Number of operations

Size of input data + size of output data
I ≤

I(n) · 2n3

3n2
= 2

3
n = O(n)

I(n) ·
5n log2(n)

2n
= 5

2
log2(n) = O(log(n))

I(n) · n
2n

= 1
2
= O(1)

© Markus Püschel
Computer Science

Effects

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double)
Gflop/s

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

.

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single)
Gflop/s

MMM: I(n) ≤ O(n) FFT: I(n) ≤ O(log(n))

Up to 80-90% peak
Performance can be maintained
Cache miss time compensated/hidden
by computation

Up to 40-50% peak
Performance drop outside L2 cache
Most time spent transferring data

